// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../kselftest.h" #define DEVPATH "/dev/dma_heap" static int check_vgem(int fd) { drm_version_t version = { 0 }; char name[5]; int ret; version.name_len = 4; version.name = name; ret = ioctl(fd, DRM_IOCTL_VERSION, &version); if (ret || version.name_len != 4) return 0; name[4] = '\0'; return !strcmp(name, "vgem"); } static int open_vgem(void) { int i, fd; const char *drmstr = "/dev/dri/card"; fd = -1; for (i = 0; i < 16; i++) { char name[80]; snprintf(name, 80, "%s%u", drmstr, i); fd = open(name, O_RDWR); if (fd < 0) continue; if (!check_vgem(fd)) { close(fd); fd = -1; continue; } else { break; } } return fd; } static int import_vgem_fd(int vgem_fd, int dma_buf_fd, uint32_t *handle) { struct drm_prime_handle import_handle = { .fd = dma_buf_fd, .flags = 0, .handle = 0, }; int ret; ret = ioctl(vgem_fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &import_handle); if (ret == 0) *handle = import_handle.handle; return ret; } static void close_handle(int vgem_fd, uint32_t handle) { struct drm_gem_close close = { .handle = handle, }; ioctl(vgem_fd, DRM_IOCTL_GEM_CLOSE, &close); } static int dmabuf_heap_open(char *name) { int ret, fd; char buf[256]; ret = snprintf(buf, 256, "%s/%s", DEVPATH, name); if (ret < 0) ksft_exit_fail_msg("snprintf failed! %d\n", ret); fd = open(buf, O_RDWR); if (fd < 0) ksft_exit_fail_msg("open %s failed: %s\n", buf, strerror(errno)); return fd; } static int dmabuf_heap_alloc_fdflags(int fd, size_t len, unsigned int fd_flags, unsigned int heap_flags, int *dmabuf_fd) { struct dma_heap_allocation_data data = { .len = len, .fd = 0, .fd_flags = fd_flags, .heap_flags = heap_flags, }; int ret; if (!dmabuf_fd) return -EINVAL; ret = ioctl(fd, DMA_HEAP_IOCTL_ALLOC, &data); if (ret < 0) return ret; *dmabuf_fd = (int)data.fd; return ret; } static int dmabuf_heap_alloc(int fd, size_t len, unsigned int flags, int *dmabuf_fd) { return dmabuf_heap_alloc_fdflags(fd, len, O_RDWR | O_CLOEXEC, flags, dmabuf_fd); } static int dmabuf_sync(int fd, int start_stop) { struct dma_buf_sync sync = { .flags = start_stop | DMA_BUF_SYNC_RW, }; return ioctl(fd, DMA_BUF_IOCTL_SYNC, &sync); } #define ONE_MEG (1024 * 1024) static void test_alloc_and_import(char *heap_name) { int heap_fd = -1, dmabuf_fd = -1, importer_fd = -1; uint32_t handle = 0; void *p = NULL; int ret; heap_fd = dmabuf_heap_open(heap_name); ksft_print_msg("Testing allocation and importing:\n"); ret = dmabuf_heap_alloc(heap_fd, ONE_MEG, 0, &dmabuf_fd); if (ret) { ksft_test_result_fail("FAIL (Allocation Failed!) %d\n", ret); return; } /* mmap and write a simple pattern */ p = mmap(NULL, ONE_MEG, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd, 0); if (p == MAP_FAILED) { ksft_test_result_fail("FAIL (mmap() failed): %s\n", strerror(errno)); goto close_and_return; } dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_START); memset(p, 1, ONE_MEG / 2); memset((char *)p + ONE_MEG / 2, 0, ONE_MEG / 2); dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_END); importer_fd = open_vgem(); if (importer_fd < 0) { ksft_test_result_skip("Could not open vgem %d\n", importer_fd); } else { ret = import_vgem_fd(importer_fd, dmabuf_fd, &handle); ksft_test_result(ret >= 0, "Import buffer %d\n", ret); } ret = dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_START); if (ret < 0) { ksft_print_msg("FAIL (DMA_BUF_SYNC_START failed!) %d\n", ret); goto out; } memset(p, 0xff, ONE_MEG); ret = dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_END); if (ret < 0) { ksft_print_msg("FAIL (DMA_BUF_SYNC_END failed!) %d\n", ret); goto out; } close_handle(importer_fd, handle); ksft_test_result_pass("%s dmabuf sync succeeded\n", __func__); return; out: ksft_test_result_fail("%s dmabuf sync failed\n", __func__); munmap(p, ONE_MEG); close(importer_fd); close_and_return: close(dmabuf_fd); close(heap_fd); } static void test_alloc_zeroed(char *heap_name, size_t size) { int heap_fd = -1, dmabuf_fd[32]; int i, j, k, ret; void *p = NULL; char *c; ksft_print_msg("Testing alloced %ldk buffers are zeroed:\n", size / 1024); heap_fd = dmabuf_heap_open(heap_name); /* Allocate and fill a bunch of buffers */ for (i = 0; i < 32; i++) { ret = dmabuf_heap_alloc(heap_fd, size, 0, &dmabuf_fd[i]); if (ret) { ksft_test_result_fail("FAIL (Allocation (%i) failed) %d\n", i, ret); goto close_and_return; } /* mmap and fill with simple pattern */ p = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd[i], 0); if (p == MAP_FAILED) { ksft_test_result_fail("FAIL (mmap() failed!): %s\n", strerror(errno)); goto close_and_return; } dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_START); memset(p, 0xff, size); dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_END); munmap(p, size); } /* close them all */ for (i = 0; i < 32; i++) close(dmabuf_fd[i]); ksft_test_result_pass("Allocate and fill a bunch of buffers\n"); /* Allocate and validate all buffers are zeroed */ for (i = 0; i < 32; i++) { ret = dmabuf_heap_alloc(heap_fd, size, 0, &dmabuf_fd[i]); if (ret < 0) { ksft_test_result_fail("FAIL (Allocation (%i) failed) %d\n", i, ret); goto close_and_return; } /* mmap and validate everything is zero */ p = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd[i], 0); if (p == MAP_FAILED) { ksft_test_result_fail("FAIL (mmap() failed!): %s\n", strerror(errno)); goto close_and_return; } dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_START); c = (char *)p; for (j = 0; j < size; j++) { if (c[j] != 0) { ksft_print_msg("FAIL (Allocated buffer not zeroed @ %i)\n", j); dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_END); munmap(p, size); goto out; } } dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_END); munmap(p, size); } out: ksft_test_result(i == 32, "Allocate and validate all buffers are zeroed\n"); close_and_return: /* close them all */ for (k = 0; k < i; k++) close(dmabuf_fd[k]); close(heap_fd); return; } /* Test the ioctl version compatibility w/ a smaller structure then expected */ static int dmabuf_heap_alloc_older(int fd, size_t len, unsigned int flags, int *dmabuf_fd) { int ret; unsigned int older_alloc_ioctl; struct dma_heap_allocation_data_smaller { __u64 len; __u32 fd; __u32 fd_flags; } data = { .len = len, .fd = 0, .fd_flags = O_RDWR | O_CLOEXEC, }; older_alloc_ioctl = _IOWR(DMA_HEAP_IOC_MAGIC, 0x0, struct dma_heap_allocation_data_smaller); if (!dmabuf_fd) return -EINVAL; ret = ioctl(fd, older_alloc_ioctl, &data); if (ret < 0) return ret; *dmabuf_fd = (int)data.fd; return ret; } /* Test the ioctl version compatibility w/ a larger structure then expected */ static int dmabuf_heap_alloc_newer(int fd, size_t len, unsigned int flags, int *dmabuf_fd) { int ret; unsigned int newer_alloc_ioctl; struct dma_heap_allocation_data_bigger { __u64 len; __u32 fd; __u32 fd_flags; __u64 heap_flags; __u64 garbage1; __u64 garbage2; __u64 garbage3; } data = { .len = len, .fd = 0, .fd_flags = O_RDWR | O_CLOEXEC, .heap_flags = flags, .garbage1 = 0xffffffff, .garbage2 = 0x88888888, .garbage3 = 0x11111111, }; newer_alloc_ioctl = _IOWR(DMA_HEAP_IOC_MAGIC, 0x0, struct dma_heap_allocation_data_bigger); if (!dmabuf_fd) return -EINVAL; ret = ioctl(fd, newer_alloc_ioctl, &data); if (ret < 0) return ret; *dmabuf_fd = (int)data.fd; return ret; } static void test_alloc_compat(char *heap_name) { int ret, heap_fd = -1, dmabuf_fd = -1; heap_fd = dmabuf_heap_open(heap_name); ksft_print_msg("Testing (theoretical) older alloc compat:\n"); ret = dmabuf_heap_alloc_older(heap_fd, ONE_MEG, 0, &dmabuf_fd); if (dmabuf_fd >= 0) close(dmabuf_fd); ksft_test_result(!ret, "dmabuf_heap_alloc_older\n"); ksft_print_msg("Testing (theoretical) newer alloc compat:\n"); ret = dmabuf_heap_alloc_newer(heap_fd, ONE_MEG, 0, &dmabuf_fd); if (dmabuf_fd >= 0) close(dmabuf_fd); ksft_test_result(!ret, "dmabuf_heap_alloc_newer\n"); close(heap_fd); } static void test_alloc_errors(char *heap_name) { int heap_fd = -1, dmabuf_fd = -1; int ret; heap_fd = dmabuf_heap_open(heap_name); ksft_print_msg("Testing expected error cases:\n"); ret = dmabuf_heap_alloc(0, ONE_MEG, 0x111111, &dmabuf_fd); ksft_test_result(ret, "Error expected on invalid fd %d\n", ret); ret = dmabuf_heap_alloc(heap_fd, ONE_MEG, 0x111111, &dmabuf_fd); ksft_test_result(ret, "Error expected on invalid heap flags %d\n", ret); ret = dmabuf_heap_alloc_fdflags(heap_fd, ONE_MEG, ~(O_RDWR | O_CLOEXEC), 0, &dmabuf_fd); ksft_test_result(ret, "Error expected on invalid heap flags %d\n", ret); if (dmabuf_fd >= 0) close(dmabuf_fd); close(heap_fd); } static int numer_of_heaps(void) { DIR *d = opendir(DEVPATH); struct dirent *dir; int heaps = 0; while ((dir = readdir(d))) { if (!strncmp(dir->d_name, ".", 2)) continue; if (!strncmp(dir->d_name, "..", 3)) continue; heaps++; } return heaps; } int main(void) { struct dirent *dir; DIR *d; ksft_print_header(); d = opendir(DEVPATH); if (!d) { ksft_print_msg("No %s directory?\n", DEVPATH); return KSFT_SKIP; } ksft_set_plan(11 * numer_of_heaps()); while ((dir = readdir(d))) { if (!strncmp(dir->d_name, ".", 2)) continue; if (!strncmp(dir->d_name, "..", 3)) continue; ksft_print_msg("Testing heap: %s\n", dir->d_name); ksft_print_msg("=======================================\n"); test_alloc_and_import(dir->d_name); test_alloc_zeroed(dir->d_name, 4 * 1024); test_alloc_zeroed(dir->d_name, ONE_MEG); test_alloc_compat(dir->d_name); test_alloc_errors(dir->d_name); } closedir(d); ksft_finished(); }