#!/usr/bin/env python3 # SPDX-License-Identifier: GPL-2.0 # # Run a perf script command multiple times in parallel, using perf script # options --cpu and --time so that each job processes a different chunk # of the data. # # Copyright (c) 2024, Intel Corporation. import subprocess import argparse import pathlib import shlex import time import copy import sys import os import re glb_prog_name = "parallel-perf.py" glb_min_interval = 10.0 glb_min_samples = 64 class Verbosity(): def __init__(self, quiet=False, verbose=False, debug=False): self.normal = True self.verbose = verbose self.debug = debug self.self_test = True if self.debug: self.verbose = True if self.verbose: quiet = False if quiet: self.normal = False # Manage work (Start/Wait/Kill), as represented by a subprocess.Popen command class Work(): def __init__(self, cmd, pipe_to, output_dir="."): self.popen = None self.consumer = None self.cmd = cmd self.pipe_to = pipe_to self.output_dir = output_dir self.cmdout_name = f"{output_dir}/cmd.txt" self.stdout_name = f"{output_dir}/out.txt" self.stderr_name = f"{output_dir}/err.txt" def Command(self): sh_cmd = [ shlex.quote(x) for x in self.cmd ] return " ".join(self.cmd) def Stdout(self): return open(self.stdout_name, "w") def Stderr(self): return open(self.stderr_name, "w") def CreateOutputDir(self): pathlib.Path(self.output_dir).mkdir(parents=True, exist_ok=True) def Start(self): if self.popen: return self.CreateOutputDir() with open(self.cmdout_name, "w") as f: f.write(self.Command()) f.write("\n") stdout = self.Stdout() stderr = self.Stderr() if self.pipe_to: self.popen = subprocess.Popen(self.cmd, stdout=subprocess.PIPE, stderr=stderr) args = shlex.split(self.pipe_to) self.consumer = subprocess.Popen(args, stdin=self.popen.stdout, stdout=stdout, stderr=stderr) else: self.popen = subprocess.Popen(self.cmd, stdout=stdout, stderr=stderr) def RemoveEmptyErrFile(self): if os.path.exists(self.stderr_name): if os.path.getsize(self.stderr_name) == 0: os.unlink(self.stderr_name) def Errors(self): if os.path.exists(self.stderr_name): if os.path.getsize(self.stderr_name) != 0: return [ f"Non-empty error file {self.stderr_name}" ] return [] def TidyUp(self): self.RemoveEmptyErrFile() def RawPollWait(self, p, wait): if wait: return p.wait() return p.poll() def Poll(self, wait=False): if not self.popen: return None result = self.RawPollWait(self.popen, wait) if self.consumer: res = result result = self.RawPollWait(self.consumer, wait) if result != None and res == None: self.popen.kill() result = None elif result == 0 and res != None and res != 0: result = res if result != None: self.TidyUp() return result def Wait(self): return self.Poll(wait=True) def Kill(self): if not self.popen: return self.popen.kill() if self.consumer: self.consumer.kill() def KillWork(worklist, verbosity): for w in worklist: w.Kill() for w in worklist: w.Wait() def NumberOfCPUs(): return os.sysconf("SC_NPROCESSORS_ONLN") def NanoSecsToSecsStr(x): if x == None: return "" x = str(x) if len(x) < 10: x = "0" * (10 - len(x)) + x return x[:len(x) - 9] + "." + x[-9:] def InsertOptionAfter(cmd, option, after): try: pos = cmd.index(after) cmd.insert(pos + 1, option) except: cmd.append(option) def CreateWorkList(cmd, pipe_to, output_dir, cpus, time_ranges_by_cpu): max_len = len(str(cpus[-1])) cpu_dir_fmt = f"cpu-%.{max_len}u" worklist = [] pos = 0 for cpu in cpus: if cpu >= 0: cpu_dir = os.path.join(output_dir, cpu_dir_fmt % cpu) cpu_option = f"--cpu={cpu}" else: cpu_dir = output_dir cpu_option = None tr_dir_fmt = "time-range" if len(time_ranges_by_cpu) > 1: time_ranges = time_ranges_by_cpu[pos] tr_dir_fmt += f"-{pos}" pos += 1 else: time_ranges = time_ranges_by_cpu[0] max_len = len(str(len(time_ranges))) tr_dir_fmt += f"-%.{max_len}u" i = 0 for r in time_ranges: if r == [None, None]: time_option = None work_output_dir = cpu_dir else: time_option = "--time=" + NanoSecsToSecsStr(r[0]) + "," + NanoSecsToSecsStr(r[1]) work_output_dir = os.path.join(cpu_dir, tr_dir_fmt % i) i += 1 work_cmd = list(cmd) if time_option != None: InsertOptionAfter(work_cmd, time_option, "script") if cpu_option != None: InsertOptionAfter(work_cmd, cpu_option, "script") w = Work(work_cmd, pipe_to, work_output_dir) worklist.append(w) return worklist def DoRunWork(worklist, nr_jobs, verbosity): nr_to_do = len(worklist) not_started = list(worklist) running = [] done = [] chg = False while True: nr_done = len(done) if chg and verbosity.normal: nr_run = len(running) print(f"\rThere are {nr_to_do} jobs: {nr_done} completed, {nr_run} running", flush=True, end=" ") if verbosity.verbose: print() chg = False if nr_done == nr_to_do: break while len(running) < nr_jobs and len(not_started): w = not_started.pop(0) running.append(w) if verbosity.verbose: print("Starting:", w.Command()) w.Start() chg = True if len(running): time.sleep(0.1) finished = [] not_finished = [] while len(running): w = running.pop(0) r = w.Poll() if r == None: not_finished.append(w) continue if r == 0: if verbosity.verbose: print("Finished:", w.Command()) finished.append(w) chg = True continue if verbosity.normal and not verbosity.verbose: print() print("Job failed!\n return code:", r, "\n command: ", w.Command()) if w.pipe_to: print(" piped to: ", w.pipe_to) print("Killing outstanding jobs") KillWork(not_finished, verbosity) KillWork(running, verbosity) return False running = not_finished done += finished errorlist = [] for w in worklist: errorlist += w.Errors() if len(errorlist): print("Errors:") for e in errorlist: print(e) elif verbosity.normal: print("\r"," "*50, "\rAll jobs finished successfully", flush=True) return True def RunWork(worklist, nr_jobs=NumberOfCPUs(), verbosity=Verbosity()): try: return DoRunWork(worklist, nr_jobs, verbosity) except: for w in worklist: w.Kill() raise return True def ReadHeader(perf, file_name): return subprocess.Popen([perf, "script", "--header-only", "--input", file_name], stdout=subprocess.PIPE).stdout.read().decode("utf-8") def ParseHeader(hdr): result = {} lines = hdr.split("\n") for line in lines: if ":" in line and line[0] == "#": pos = line.index(":") name = line[1:pos-1].strip() value = line[pos+1:].strip() if name in result: orig_name = name nr = 2 while True: name = f"{orig_name} {nr}" if name not in result: break nr += 1 result[name] = value return result def HeaderField(hdr_dict, hdr_fld): if hdr_fld not in hdr_dict: raise Exception(f"'{hdr_fld}' missing from header information") return hdr_dict[hdr_fld] # Represent the position of an option within a command string # and provide the option value and/or remove the option class OptPos(): def Init(self, opt_element=-1, value_element=-1, opt_pos=-1, value_pos=-1, error=None): self.opt_element = opt_element # list element that contains option self.value_element = value_element # list element that contains option value self.opt_pos = opt_pos # string position of option self.value_pos = value_pos # string position of value self.error = error # error message string def __init__(self, args, short_name, long_name, default=None): self.args = list(args) self.default = default n = 2 + len(long_name) m = len(short_name) pos = -1 for opt in args: pos += 1 if m and opt[:2] == f"-{short_name}": if len(opt) == 2: if pos + 1 < len(args): self.Init(pos, pos + 1, 0, 0) else: self.Init(error = f"-{short_name} option missing value") else: self.Init(pos, pos, 0, 2) return if opt[:n] == f"--{long_name}": if len(opt) == n: if pos + 1 < len(args): self.Init(pos, pos + 1, 0, 0) else: self.Init(error = f"--{long_name} option missing value") elif opt[n] == "=": self.Init(pos, pos, 0, n + 1) else: self.Init(error = f"--{long_name} option expected '='") return if m and opt[:1] == "-" and opt[:2] != "--" and short_name in opt: ipos = opt.index(short_name) if "-" in opt[1:]: hpos = opt[1:].index("-") if hpos < ipos: continue if ipos + 1 == len(opt): if pos + 1 < len(args): self.Init(pos, pos + 1, ipos, 0) else: self.Init(error = f"-{short_name} option missing value") else: self.Init(pos, pos, ipos, ipos + 1) return self.Init() def Value(self): if self.opt_element >= 0: if self.opt_element != self.value_element: return self.args[self.value_element] else: return self.args[self.value_element][self.value_pos:] return self.default def Remove(self, args): if self.opt_element == -1: return if self.opt_element != self.value_element: del args[self.value_element] if self.opt_pos: args[self.opt_element] = args[self.opt_element][:self.opt_pos] else: del args[self.opt_element] def DetermineInputFileName(cmd): p = OptPos(cmd, "i", "input", "perf.data") if p.error: raise Exception(f"perf command {p.error}") file_name = p.Value() if not os.path.exists(file_name): raise Exception(f"perf command input file '{file_name}' not found") return file_name def ReadOption(args, short_name, long_name, err_prefix, remove=False): p = OptPos(args, short_name, long_name) if p.error: raise Exception(f"{err_prefix}{p.error}") value = p.Value() if remove: p.Remove(args) return value def ExtractOption(args, short_name, long_name, err_prefix): return ReadOption(args, short_name, long_name, err_prefix, True) def ReadPerfOption(args, short_name, long_name): return ReadOption(args, short_name, long_name, "perf command ") def ExtractPerfOption(args, short_name, long_name): return ExtractOption(args, short_name, long_name, "perf command ") def PerfDoubleQuickCommands(cmd, file_name): cpu_str = ReadPerfOption(cmd, "C", "cpu") time_str = ReadPerfOption(cmd, "", "time") # Use double-quick sampling to determine trace data density times_cmd = ["perf", "script", "--ns", "--input", file_name, "--itrace=qqi"] if cpu_str != None and cpu_str != "": times_cmd.append(f"--cpu={cpu_str}") if time_str != None and time_str != "": times_cmd.append(f"--time={time_str}") cnts_cmd = list(times_cmd) cnts_cmd.append("-Fcpu") times_cmd.append("-Fcpu,time") return cnts_cmd, times_cmd class CPUTimeRange(): def __init__(self, cpu): self.cpu = cpu self.sample_cnt = 0 self.time_ranges = None self.interval = 0 self.interval_remaining = 0 self.remaining = 0 self.tr_pos = 0 def CalcTimeRangesByCPU(line, cpu, cpu_time_ranges, max_time): cpu_time_range = cpu_time_ranges[cpu] cpu_time_range.remaining -= 1 cpu_time_range.interval_remaining -= 1 if cpu_time_range.remaining == 0: cpu_time_range.time_ranges[cpu_time_range.tr_pos][1] = max_time return if cpu_time_range.interval_remaining == 0: time = TimeVal(line[1][:-1], 0) time_ranges = cpu_time_range.time_ranges time_ranges[cpu_time_range.tr_pos][1] = time - 1 time_ranges.append([time, max_time]) cpu_time_range.tr_pos += 1 cpu_time_range.interval_remaining = cpu_time_range.interval def CountSamplesByCPU(line, cpu, cpu_time_ranges): try: cpu_time_ranges[cpu].sample_cnt += 1 except: print("exception") print("cpu", cpu) print("len(cpu_time_ranges)", len(cpu_time_ranges)) raise def ProcessCommandOutputLines(cmd, per_cpu, fn, *x): # Assume CPU number is at beginning of line and enclosed by [] pat = re.compile(r"\s*\[[0-9]+\]") p = subprocess.Popen(cmd, stdout=subprocess.PIPE) while True: line = p.stdout.readline() if line: line = line.decode("utf-8") if pat.match(line): line = line.split() if per_cpu: # Assumes CPU number is enclosed by [] cpu = int(line[0][1:-1]) else: cpu = 0 fn(line, cpu, *x) else: break p.wait() def IntersectTimeRanges(new_time_ranges, time_ranges): pos = 0 new_pos = 0 # Can assume len(time_ranges) != 0 and len(new_time_ranges) != 0 # Note also, there *must* be at least one intersection. while pos < len(time_ranges) and new_pos < len(new_time_ranges): # new end < old start => no intersection, remove new if new_time_ranges[new_pos][1] < time_ranges[pos][0]: del new_time_ranges[new_pos] continue # new start > old end => no intersection, check next if new_time_ranges[new_pos][0] > time_ranges[pos][1]: pos += 1 if pos < len(time_ranges): continue # no next, so remove remaining while new_pos < len(new_time_ranges): del new_time_ranges[new_pos] return # Found an intersection # new start < old start => adjust new start = old start if new_time_ranges[new_pos][0] < time_ranges[pos][0]: new_time_ranges[new_pos][0] = time_ranges[pos][0] # new end > old end => keep the overlap, insert the remainder if new_time_ranges[new_pos][1] > time_ranges[pos][1]: r = [ time_ranges[pos][1] + 1, new_time_ranges[new_pos][1] ] new_time_ranges[new_pos][1] = time_ranges[pos][1] new_pos += 1 new_time_ranges.insert(new_pos, r) continue # new [start, end] is within old [start, end] new_pos += 1 def SplitTimeRangesByTraceDataDensity(time_ranges, cpus, nr, cmd, file_name, per_cpu, min_size, min_interval, verbosity): if verbosity.normal: print("\rAnalyzing...", flush=True, end=" ") if verbosity.verbose: print() cnts_cmd, times_cmd = PerfDoubleQuickCommands(cmd, file_name) nr_cpus = cpus[-1] + 1 if per_cpu else 1 if per_cpu: nr_cpus = cpus[-1] + 1 cpu_time_ranges = [ CPUTimeRange(cpu) for cpu in range(nr_cpus) ] else: nr_cpus = 1 cpu_time_ranges = [ CPUTimeRange(-1) ] if verbosity.debug: print("nr_cpus", nr_cpus) print("cnts_cmd", cnts_cmd) print("times_cmd", times_cmd) # Count the number of "double quick" samples per CPU ProcessCommandOutputLines(cnts_cmd, per_cpu, CountSamplesByCPU, cpu_time_ranges) tot = 0 mx = 0 for cpu_time_range in cpu_time_ranges: cnt = cpu_time_range.sample_cnt tot += cnt if cnt > mx: mx = cnt if verbosity.debug: print("cpu:", cpu_time_range.cpu, "sample_cnt", cnt) if min_size < 1: min_size = 1 if mx < min_size: # Too little data to be worth splitting if verbosity.debug: print("Too little data to split by time") if nr == 0: nr = 1 return [ SplitTimeRangesIntoN(time_ranges, nr, min_interval) ] if nr: divisor = nr min_size = 1 else: divisor = NumberOfCPUs() interval = int(round(tot / divisor, 0)) if interval < min_size: interval = min_size if verbosity.debug: print("divisor", divisor) print("min_size", min_size) print("interval", interval) min_time = time_ranges[0][0] max_time = time_ranges[-1][1] for cpu_time_range in cpu_time_ranges: cnt = cpu_time_range.sample_cnt if cnt == 0: cpu_time_range.time_ranges = copy.deepcopy(time_ranges) continue # Adjust target interval for CPU to give approximately equal interval sizes # Determine number of intervals, rounding to nearest integer n = int(round(cnt / interval, 0)) if n < 1: n = 1 # Determine interval size, rounding up d, m = divmod(cnt, n) if m: d += 1 cpu_time_range.interval = d cpu_time_range.interval_remaining = d cpu_time_range.remaining = cnt # Init. time ranges for each CPU with the start time cpu_time_range.time_ranges = [ [min_time, max_time] ] # Set time ranges so that the same number of "double quick" samples # will fall into each time range. ProcessCommandOutputLines(times_cmd, per_cpu, CalcTimeRangesByCPU, cpu_time_ranges, max_time) for cpu_time_range in cpu_time_ranges: if cpu_time_range.sample_cnt: IntersectTimeRanges(cpu_time_range.time_ranges, time_ranges) return [cpu_time_ranges[cpu].time_ranges for cpu in cpus] def SplitSingleTimeRangeIntoN(time_range, n): if n <= 1: return [time_range] start = time_range[0] end = time_range[1] duration = int((end - start + 1) / n) if duration < 1: return [time_range] time_ranges = [] for i in range(n): time_ranges.append([start, start + duration - 1]) start += duration time_ranges[-1][1] = end return time_ranges def TimeRangeDuration(r): return r[1] - r[0] + 1 def TotalDuration(time_ranges): duration = 0 for r in time_ranges: duration += TimeRangeDuration(r) return duration def SplitTimeRangesByInterval(time_ranges, interval): new_ranges = [] for r in time_ranges: duration = TimeRangeDuration(r) n = duration / interval n = int(round(n, 0)) new_ranges += SplitSingleTimeRangeIntoN(r, n) return new_ranges def SplitTimeRangesIntoN(time_ranges, n, min_interval): if n <= len(time_ranges): return time_ranges duration = TotalDuration(time_ranges) interval = duration / n if interval < min_interval: interval = min_interval return SplitTimeRangesByInterval(time_ranges, interval) def RecombineTimeRanges(tr): new_tr = copy.deepcopy(tr) n = len(new_tr) i = 1 while i < len(new_tr): # if prev end + 1 == cur start, combine them if new_tr[i - 1][1] + 1 == new_tr[i][0]: new_tr[i][0] = new_tr[i - 1][0] del new_tr[i - 1] else: i += 1 return new_tr def OpenTimeRangeEnds(time_ranges, min_time, max_time): if time_ranges[0][0] <= min_time: time_ranges[0][0] = None if time_ranges[-1][1] >= max_time: time_ranges[-1][1] = None def BadTimeStr(time_str): raise Exception(f"perf command bad time option: '{time_str}'\nCheck also 'time of first sample' and 'time of last sample' in perf script --header-only") def ValidateTimeRanges(time_ranges, time_str): n = len(time_ranges) for i in range(n): start = time_ranges[i][0] end = time_ranges[i][1] if i != 0 and start <= time_ranges[i - 1][1]: BadTimeStr(time_str) if start > end: BadTimeStr(time_str) def TimeVal(s, dflt): s = s.strip() if s == "": return dflt a = s.split(".") if len(a) > 2: raise Exception(f"Bad time value'{s}'") x = int(a[0]) if x < 0: raise Exception("Negative time not allowed") x *= 1000000000 if len(a) > 1: x += int((a[1] + "000000000")[:9]) return x def BadCPUStr(cpu_str): raise Exception(f"perf command bad cpu option: '{cpu_str}'\nCheck also 'nrcpus avail' in perf script --header-only") def ParseTimeStr(time_str, min_time, max_time): if time_str == None or time_str == "": return [[min_time, max_time]] time_ranges = [] for r in time_str.split(): a = r.split(",") if len(a) != 2: BadTimeStr(time_str) try: start = TimeVal(a[0], min_time) end = TimeVal(a[1], max_time) except: BadTimeStr(time_str) time_ranges.append([start, end]) ValidateTimeRanges(time_ranges, time_str) return time_ranges def ParseCPUStr(cpu_str, nr_cpus): if cpu_str == None or cpu_str == "": return [-1] cpus = [] for r in cpu_str.split(","): a = r.split("-") if len(a) < 1 or len(a) > 2: BadCPUStr(cpu_str) try: start = int(a[0].strip()) if len(a) > 1: end = int(a[1].strip()) else: end = start except: BadCPUStr(cpu_str) if start < 0 or end < 0 or end < start or end >= nr_cpus: BadCPUStr(cpu_str) cpus.extend(range(start, end + 1)) cpus = list(set(cpus)) # Remove duplicates cpus.sort() return cpus class ParallelPerf(): def __init__(self, a): for arg_name in vars(a): setattr(self, arg_name, getattr(a, arg_name)) self.orig_nr = self.nr self.orig_cmd = list(self.cmd) self.perf = self.cmd[0] if os.path.exists(self.output_dir): raise Exception(f"Output '{self.output_dir}' already exists") if self.jobs < 0 or self.nr < 0 or self.interval < 0: raise Exception("Bad options (negative values): try -h option for help") if self.nr != 0 and self.interval != 0: raise Exception("Cannot specify number of time subdivisions and time interval") if self.jobs == 0: self.jobs = NumberOfCPUs() if self.nr == 0 and self.interval == 0: if self.per_cpu: self.nr = 1 else: self.nr = self.jobs def Init(self): if self.verbosity.debug: print("cmd", self.cmd) self.file_name = DetermineInputFileName(self.cmd) self.hdr = ReadHeader(self.perf, self.file_name) self.hdr_dict = ParseHeader(self.hdr) self.cmd_line = HeaderField(self.hdr_dict, "cmdline") def ExtractTimeInfo(self): self.min_time = TimeVal(HeaderField(self.hdr_dict, "time of first sample"), 0) self.max_time = TimeVal(HeaderField(self.hdr_dict, "time of last sample"), 0) self.time_str = ExtractPerfOption(self.cmd, "", "time") self.time_ranges = ParseTimeStr(self.time_str, self.min_time, self.max_time) if self.verbosity.debug: print("time_ranges", self.time_ranges) def ExtractCPUInfo(self): if self.per_cpu: nr_cpus = int(HeaderField(self.hdr_dict, "nrcpus avail")) self.cpu_str = ExtractPerfOption(self.cmd, "C", "cpu") if self.cpu_str == None or self.cpu_str == "": self.cpus = [ x for x in range(nr_cpus) ] else: self.cpus = ParseCPUStr(self.cpu_str, nr_cpus) else: self.cpu_str = None self.cpus = [-1] if self.verbosity.debug: print("cpus", self.cpus) def IsIntelPT(self): return self.cmd_line.find("intel_pt") >= 0 def SplitTimeRanges(self): if self.IsIntelPT() and self.interval == 0: self.split_time_ranges_for_each_cpu = \ SplitTimeRangesByTraceDataDensity(self.time_ranges, self.cpus, self.orig_nr, self.orig_cmd, self.file_name, self.per_cpu, self.min_size, self.min_interval, self.verbosity) elif self.nr: self.split_time_ranges_for_each_cpu = [ SplitTimeRangesIntoN(self.time_ranges, self.nr, self.min_interval) ] else: self.split_time_ranges_for_each_cpu = [ SplitTimeRangesByInterval(self.time_ranges, self.interval) ] def CheckTimeRanges(self): for tr in self.split_time_ranges_for_each_cpu: # Re-combined time ranges should be the same new_tr = RecombineTimeRanges(tr) if new_tr != self.time_ranges: if self.verbosity.debug: print("tr", tr) print("new_tr", new_tr) raise Exception("Self test failed!") def OpenTimeRangeEnds(self): for time_ranges in self.split_time_ranges_for_each_cpu: OpenTimeRangeEnds(time_ranges, self.min_time, self.max_time) def CreateWorkList(self): self.worklist = CreateWorkList(self.cmd, self.pipe_to, self.output_dir, self.cpus, self.split_time_ranges_for_each_cpu) def PerfDataRecordedPerCPU(self): if "--per-thread" in self.cmd_line.split(): return False return True def DefaultToPerCPU(self): # --no-per-cpu option takes precedence if self.no_per_cpu: return False if not self.PerfDataRecordedPerCPU(): return False # Default to per-cpu for Intel PT data that was recorded per-cpu, # because decoding can be done for each CPU separately. if self.IsIntelPT(): return True return False def Config(self): self.Init() self.ExtractTimeInfo() if not self.per_cpu: self.per_cpu = self.DefaultToPerCPU() if self.verbosity.debug: print("per_cpu", self.per_cpu) self.ExtractCPUInfo() self.SplitTimeRanges() if self.verbosity.self_test: self.CheckTimeRanges() # Prefer open-ended time range to starting / ending with min_time / max_time resp. self.OpenTimeRangeEnds() self.CreateWorkList() def Run(self): if self.dry_run: print(len(self.worklist),"jobs:") for w in self.worklist: print(w.Command()) return True result = RunWork(self.worklist, self.jobs, verbosity=self.verbosity) if self.verbosity.verbose: print(glb_prog_name, "done") return result def RunParallelPerf(a): pp = ParallelPerf(a) pp.Config() return pp.Run() def Main(args): ap = argparse.ArgumentParser( prog=glb_prog_name, formatter_class = argparse.RawDescriptionHelpFormatter, description = """ Run a perf script command multiple times in parallel, using perf script options --cpu and --time so that each job processes a different chunk of the data. """, epilog = """ Follow the options by '--' and then the perf script command e.g. $ perf record -a -- sleep 10 $ parallel-perf.py --nr=4 -- perf script --ns All jobs finished successfully $ tree parallel-perf-output/ parallel-perf-output/ ├── time-range-0 │   ├── cmd.txt │   └── out.txt ├── time-range-1 │   ├── cmd.txt │   └── out.txt ├── time-range-2 │   ├── cmd.txt │   └── out.txt └── time-range-3 ├── cmd.txt └── out.txt $ find parallel-perf-output -name cmd.txt | sort | xargs grep -H . parallel-perf-output/time-range-0/cmd.txt:perf script --time=,9466.504461499 --ns parallel-perf-output/time-range-1/cmd.txt:perf script --time=9466.504461500,9469.005396999 --ns parallel-perf-output/time-range-2/cmd.txt:perf script --time=9469.005397000,9471.506332499 --ns parallel-perf-output/time-range-3/cmd.txt:perf script --time=9471.506332500, --ns Any perf script command can be used, including the use of perf script options --dlfilter and --script, so that the benefit of running parallel jobs naturally extends to them also. If option --pipe-to is used, standard output is first piped through that command. Beware, if the command fails (e.g. grep with no matches), it will be considered a fatal error. Final standard output is redirected to files named out.txt in separate subdirectories under the output directory. Similarly, standard error is written to files named err.txt. In addition, files named cmd.txt contain the corresponding perf script command. After processing, err.txt files are removed if they are empty. If any job exits with a non-zero exit code, then all jobs are killed and no more are started. A message is printed if any job results in a non-empty err.txt file. There is a separate output subdirectory for each time range. If the --per-cpu option is used, these are further grouped under cpu-n subdirectories, e.g. $ parallel-perf.py --per-cpu --nr=2 -- perf script --ns --cpu=0,1 All jobs finished successfully $ tree parallel-perf-output parallel-perf-output/ ├── cpu-0 │   ├── time-range-0 │   │   ├── cmd.txt │   │   └── out.txt │   └── time-range-1 │   ├── cmd.txt │   └── out.txt └── cpu-1 ├── time-range-0 │   ├── cmd.txt │   └── out.txt └── time-range-1 ├── cmd.txt └── out.txt $ find parallel-perf-output -name cmd.txt | sort | xargs grep -H . parallel-perf-output/cpu-0/time-range-0/cmd.txt:perf script --cpu=0 --time=,9469.005396999 --ns parallel-perf-output/cpu-0/time-range-1/cmd.txt:perf script --cpu=0 --time=9469.005397000, --ns parallel-perf-output/cpu-1/time-range-0/cmd.txt:perf script --cpu=1 --time=,9469.005396999 --ns parallel-perf-output/cpu-1/time-range-1/cmd.txt:perf script --cpu=1 --time=9469.005397000, --ns Subdivisions of time range, and cpus if the --per-cpu option is used, are expressed by the --time and --cpu perf script options respectively. If the supplied perf script command has a --time option, then that time range is subdivided, otherwise the time range given by 'time of first sample' to 'time of last sample' is used (refer perf script --header-only). Similarly, the supplied perf script command may provide a --cpu option, and only those CPUs will be processed. To prevent time intervals becoming too small, the --min-interval option can be used. Note there is special handling for processing Intel PT traces. If an interval is not specified and the perf record command contained the intel_pt event, then the time range will be subdivided in order to produce subdivisions that contain approximately the same amount of trace data. That is accomplished by counting double-quick (--itrace=qqi) samples, and choosing time ranges that encompass approximately the same number of samples. In that case, time ranges may not be the same for each CPU processed. For Intel PT, --per-cpu is the default, but that can be overridden by --no-per-cpu. Note, for Intel PT, double-quick decoding produces 1 sample for each PSB synchronization packet, which in turn come after a certain number of bytes output, determined by psb_period (refer perf Intel PT documentation). The minimum number of double-quick samples that will define a time range can be set by the --min_size option, which defaults to 64. """) ap.add_argument("-o", "--output-dir", default="parallel-perf-output", help="output directory (default 'parallel-perf-output')") ap.add_argument("-j", "--jobs", type=int, default=0, help="maximum number of jobs to run in parallel at one time (default is the number of CPUs)") ap.add_argument("-n", "--nr", type=int, default=0, help="number of time subdivisions (default is the number of jobs)") ap.add_argument("-i", "--interval", type=float, default=0, help="subdivide the time range using this time interval (in seconds e.g. 0.1 for a tenth of a second)") ap.add_argument("-c", "--per-cpu", action="store_true", help="process data for each CPU in parallel") ap.add_argument("-m", "--min-interval", type=float, default=glb_min_interval, help=f"minimum interval (default {glb_min_interval} seconds)") ap.add_argument("-p", "--pipe-to", help="command to pipe output to (optional)") ap.add_argument("-N", "--no-per-cpu", action="store_true", help="do not process data for each CPU in parallel") ap.add_argument("-b", "--min_size", type=int, default=glb_min_samples, help="minimum data size (for Intel PT in PSBs)") ap.add_argument("-D", "--dry-run", action="store_true", help="do not run any jobs, just show the perf script commands") ap.add_argument("-q", "--quiet", action="store_true", help="do not print any messages except errors") ap.add_argument("-v", "--verbose", action="store_true", help="print more messages") ap.add_argument("-d", "--debug", action="store_true", help="print debugging messages") cmd_line = list(args) try: split_pos = cmd_line.index("--") cmd = cmd_line[split_pos + 1:] args = cmd_line[:split_pos] except: cmd = None args = cmd_line a = ap.parse_args(args=args[1:]) a.cmd = cmd a.verbosity = Verbosity(a.quiet, a.verbose, a.debug) try: if a.cmd == None: if len(args) <= 1: ap.print_help() return True raise Exception("Command line must contain '--' before perf command") return RunParallelPerf(a) except Exception as e: print("Fatal error: ", str(e)) if a.debug: raise return False if __name__ == "__main__": if not Main(sys.argv): sys.exit(1)