#!/usr/bin/env python3 # SPDX-License-Identifier: GPL-2.0+ # # Copyright 2024 Google LLC # Written by Simon Glass # """Build a FIT containing a lot of devicetree files Usage: make_fit.py -A arm64 -n 'Linux-6.6' -O linux -o arch/arm64/boot/image.fit -k /tmp/kern/arch/arm64/boot/image.itk @arch/arm64/boot/dts/dtbs-list -E -c gzip Creates a FIT containing the supplied kernel and a set of devicetree files, either specified individually or listed in a file (with an '@' prefix). Use -E to generate an external FIT (where the data is placed after the FIT data structure). This allows parsing of the data without loading the entire FIT. Use -c to compress the data, using bzip2, gzip, lz4, lzma, lzo and zstd algorithms. Use -D to decompose "composite" DTBs into their base components and deduplicate the resulting base DTBs and DTB overlays. This requires the DTBs to be sourced from the kernel build directory, as the implementation looks at the .cmd files produced by the kernel build. The resulting FIT can be booted by bootloaders which support FIT, such as U-Boot, Linuxboot, Tianocore, etc. Note that this tool does not yet support adding a ramdisk / initrd. """ import argparse import collections import os import subprocess import sys import tempfile import time import libfdt # Tool extension and the name of the command-line tools CompTool = collections.namedtuple('CompTool', 'ext,tools') COMP_TOOLS = { 'bzip2': CompTool('.bz2', 'bzip2'), 'gzip': CompTool('.gz', 'pigz,gzip'), 'lz4': CompTool('.lz4', 'lz4'), 'lzma': CompTool('.lzma', 'lzma'), 'lzo': CompTool('.lzo', 'lzop'), 'zstd': CompTool('.zstd', 'zstd'), } def parse_args(): """Parse the program ArgumentParser Returns: Namespace object containing the arguments """ epilog = 'Build a FIT from a directory tree containing .dtb files' parser = argparse.ArgumentParser(epilog=epilog, fromfile_prefix_chars='@') parser.add_argument('-A', '--arch', type=str, required=True, help='Specifies the architecture') parser.add_argument('-c', '--compress', type=str, default='none', help='Specifies the compression') parser.add_argument('-D', '--decompose-dtbs', action='store_true', help='Decompose composite DTBs into base DTB and overlays') parser.add_argument('-E', '--external', action='store_true', help='Convert the FIT to use external data') parser.add_argument('-n', '--name', type=str, required=True, help='Specifies the name') parser.add_argument('-o', '--output', type=str, required=True, help='Specifies the output file (.fit)') parser.add_argument('-O', '--os', type=str, required=True, help='Specifies the operating system') parser.add_argument('-k', '--kernel', type=str, required=True, help='Specifies the (uncompressed) kernel input file (.itk)') parser.add_argument('-v', '--verbose', action='store_true', help='Enable verbose output') parser.add_argument('dtbs', type=str, nargs='*', help='Specifies the devicetree files to process') return parser.parse_args() def setup_fit(fsw, name): """Make a start on writing the FIT Outputs the root properties and the 'images' node Args: fsw (libfdt.FdtSw): Object to use for writing name (str): Name of kernel image """ fsw.INC_SIZE = 65536 fsw.finish_reservemap() fsw.begin_node('') fsw.property_string('description', f'{name} with devicetree set') fsw.property_u32('#address-cells', 1) fsw.property_u32('timestamp', int(time.time())) fsw.begin_node('images') def write_kernel(fsw, data, args): """Write out the kernel image Writes a kernel node along with the required properties Args: fsw (libfdt.FdtSw): Object to use for writing data (bytes): Data to write (possibly compressed) args (Namespace): Contains necessary strings: arch: FIT architecture, e.g. 'arm64' fit_os: Operating Systems, e.g. 'linux' name: Name of OS, e.g. 'Linux-6.6.0-rc7' compress: Compression algorithm to use, e.g. 'gzip' """ with fsw.add_node('kernel'): fsw.property_string('description', args.name) fsw.property_string('type', 'kernel_noload') fsw.property_string('arch', args.arch) fsw.property_string('os', args.os) fsw.property_string('compression', args.compress) fsw.property('data', data) fsw.property_u32('load', 0) fsw.property_u32('entry', 0) def finish_fit(fsw, entries): """Finish the FIT ready for use Writes the /configurations node and subnodes Args: fsw (libfdt.FdtSw): Object to use for writing entries (list of tuple): List of configurations: str: Description of model str: Compatible stringlist """ fsw.end_node() seq = 0 with fsw.add_node('configurations'): for model, compat, files in entries: seq += 1 with fsw.add_node(f'conf-{seq}'): fsw.property('compatible', bytes(compat)) fsw.property_string('description', model) fsw.property('fdt', bytes(''.join(f'fdt-{x}\x00' for x in files), "ascii")) fsw.property_string('kernel', 'kernel') fsw.end_node() def compress_data(inf, compress): """Compress data using a selected algorithm Args: inf (IOBase): Filename containing the data to compress compress (str): Compression algorithm, e.g. 'gzip' Return: bytes: Compressed data """ if compress == 'none': return inf.read() comp = COMP_TOOLS.get(compress) if not comp: raise ValueError(f"Unknown compression algorithm '{compress}'") with tempfile.NamedTemporaryFile() as comp_fname: with open(comp_fname.name, 'wb') as outf: done = False for tool in comp.tools.split(','): try: subprocess.call([tool, '-c'], stdin=inf, stdout=outf) done = True break except FileNotFoundError: pass if not done: raise ValueError(f'Missing tool(s): {comp.tools}\n') with open(comp_fname.name, 'rb') as compf: comp_data = compf.read() return comp_data def output_dtb(fsw, seq, fname, arch, compress): """Write out a single devicetree to the FIT Args: fsw (libfdt.FdtSw): Object to use for writing seq (int): Sequence number (1 for first) fname (str): Filename containing the DTB arch: FIT architecture, e.g. 'arm64' compress (str): Compressed algorithm, e.g. 'gzip' """ with fsw.add_node(f'fdt-{seq}'): fsw.property_string('description', os.path.basename(fname)) fsw.property_string('type', 'flat_dt') fsw.property_string('arch', arch) fsw.property_string('compression', compress) with open(fname, 'rb') as inf: compressed = compress_data(inf, compress) fsw.property('data', compressed) def process_dtb(fname, args): """Process an input DTB, decomposing it if requested and is possible Args: fname (str): Filename containing the DTB args (Namespace): Program arguments Returns: tuple: str: Model name string str: Root compatible string files: list of filenames corresponding to the DTB """ # Get the compatible / model information with open(fname, 'rb') as inf: data = inf.read() fdt = libfdt.FdtRo(data) model = fdt.getprop(0, 'model').as_str() compat = fdt.getprop(0, 'compatible') if args.decompose_dtbs: # Check if the DTB needs to be decomposed path, basename = os.path.split(fname) cmd_fname = os.path.join(path, f'.{basename}.cmd') with open(cmd_fname, 'r', encoding='ascii') as inf: cmd = inf.read() if 'scripts/dtc/fdtoverlay' in cmd: # This depends on the structure of the composite DTB command files = cmd.split() files = files[files.index('-i') + 1:] else: files = [fname] else: files = [fname] return (model, compat, files) def build_fit(args): """Build the FIT from the provided files and arguments Args: args (Namespace): Program arguments Returns: tuple: bytes: FIT data int: Number of configurations generated size: Total uncompressed size of data """ seq = 0 size = 0 fsw = libfdt.FdtSw() setup_fit(fsw, args.name) entries = [] fdts = {} # Handle the kernel with open(args.kernel, 'rb') as inf: comp_data = compress_data(inf, args.compress) size += os.path.getsize(args.kernel) write_kernel(fsw, comp_data, args) for fname in args.dtbs: # Ignore non-DTB (*.dtb) files if os.path.splitext(fname)[1] != '.dtb': continue (model, compat, files) = process_dtb(fname, args) for fn in files: if fn not in fdts: seq += 1 size += os.path.getsize(fn) output_dtb(fsw, seq, fn, args.arch, args.compress) fdts[fn] = seq files_seq = [fdts[fn] for fn in files] entries.append([model, compat, files_seq]) finish_fit(fsw, entries) # Include the kernel itself in the returned file count return fsw.as_fdt().as_bytearray(), seq + 1, size def run_make_fit(): """Run the tool's main logic""" args = parse_args() out_data, count, size = build_fit(args) with open(args.output, 'wb') as outf: outf.write(out_data) ext_fit_size = None if args.external: mkimage = os.environ.get('MKIMAGE', 'mkimage') subprocess.check_call([mkimage, '-E', '-F', args.output], stdout=subprocess.DEVNULL) with open(args.output, 'rb') as inf: data = inf.read() ext_fit = libfdt.FdtRo(data) ext_fit_size = ext_fit.totalsize() if args.verbose: comp_size = len(out_data) print(f'FIT size {comp_size:#x}/{comp_size / 1024 / 1024:.1f} MB', end='') if ext_fit_size: print(f', header {ext_fit_size:#x}/{ext_fit_size / 1024:.1f} KB', end='') print(f', {count} files, uncompressed {size / 1024 / 1024:.1f} MB') if __name__ == "__main__": sys.exit(run_make_fit())