// SPDX-License-Identifier: GPL-2.0 #include #include #include #include "messages.h" #include "ctree.h" #include "extent_map.h" #include "compression.h" #include "btrfs_inode.h" #include "disk-io.h" static struct kmem_cache *extent_map_cache; int __init extent_map_init(void) { extent_map_cache = kmem_cache_create("btrfs_extent_map", sizeof(struct extent_map), 0, 0, NULL); if (!extent_map_cache) return -ENOMEM; return 0; } void __cold extent_map_exit(void) { kmem_cache_destroy(extent_map_cache); } /* * Initialize the extent tree @tree. Should be called for each new inode or * other user of the extent_map interface. */ void extent_map_tree_init(struct extent_map_tree *tree) { tree->root = RB_ROOT; INIT_LIST_HEAD(&tree->modified_extents); rwlock_init(&tree->lock); } /* * Allocate a new extent_map structure. The new structure is returned with a * reference count of one and needs to be freed using free_extent_map() */ struct extent_map *alloc_extent_map(void) { struct extent_map *em; em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS); if (!em) return NULL; RB_CLEAR_NODE(&em->rb_node); refcount_set(&em->refs, 1); INIT_LIST_HEAD(&em->list); return em; } /* * Drop the reference out on @em by one and free the structure if the reference * count hits zero. */ void free_extent_map(struct extent_map *em) { if (!em) return; if (refcount_dec_and_test(&em->refs)) { WARN_ON(extent_map_in_tree(em)); WARN_ON(!list_empty(&em->list)); kmem_cache_free(extent_map_cache, em); } } /* Do the math around the end of an extent, handling wrapping. */ static u64 range_end(u64 start, u64 len) { if (start + len < start) return (u64)-1; return start + len; } static void dec_evictable_extent_maps(struct btrfs_inode *inode) { struct btrfs_fs_info *fs_info = inode->root->fs_info; if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root))) percpu_counter_dec(&fs_info->evictable_extent_maps); } static int tree_insert(struct rb_root *root, struct extent_map *em) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct extent_map *entry = NULL; struct rb_node *orig_parent = NULL; u64 end = range_end(em->start, em->len); while (*p) { parent = *p; entry = rb_entry(parent, struct extent_map, rb_node); if (em->start < entry->start) p = &(*p)->rb_left; else if (em->start >= extent_map_end(entry)) p = &(*p)->rb_right; else return -EEXIST; } orig_parent = parent; while (parent && em->start >= extent_map_end(entry)) { parent = rb_next(parent); entry = rb_entry(parent, struct extent_map, rb_node); } if (parent) if (end > entry->start && em->start < extent_map_end(entry)) return -EEXIST; parent = orig_parent; entry = rb_entry(parent, struct extent_map, rb_node); while (parent && em->start < entry->start) { parent = rb_prev(parent); entry = rb_entry(parent, struct extent_map, rb_node); } if (parent) if (end > entry->start && em->start < extent_map_end(entry)) return -EEXIST; rb_link_node(&em->rb_node, orig_parent, p); rb_insert_color(&em->rb_node, root); return 0; } /* * Search through the tree for an extent_map with a given offset. If it can't * be found, try to find some neighboring extents */ static struct rb_node *__tree_search(struct rb_root *root, u64 offset, struct rb_node **prev_or_next_ret) { struct rb_node *n = root->rb_node; struct rb_node *prev = NULL; struct rb_node *orig_prev = NULL; struct extent_map *entry; struct extent_map *prev_entry = NULL; ASSERT(prev_or_next_ret); while (n) { entry = rb_entry(n, struct extent_map, rb_node); prev = n; prev_entry = entry; if (offset < entry->start) n = n->rb_left; else if (offset >= extent_map_end(entry)) n = n->rb_right; else return n; } orig_prev = prev; while (prev && offset >= extent_map_end(prev_entry)) { prev = rb_next(prev); prev_entry = rb_entry(prev, struct extent_map, rb_node); } /* * Previous extent map found, return as in this case the caller does not * care about the next one. */ if (prev) { *prev_or_next_ret = prev; return NULL; } prev = orig_prev; prev_entry = rb_entry(prev, struct extent_map, rb_node); while (prev && offset < prev_entry->start) { prev = rb_prev(prev); prev_entry = rb_entry(prev, struct extent_map, rb_node); } *prev_or_next_ret = prev; return NULL; } static inline u64 extent_map_block_len(const struct extent_map *em) { if (extent_map_is_compressed(em)) return em->disk_num_bytes; return em->len; } static inline u64 extent_map_block_end(const struct extent_map *em) { if (extent_map_block_start(em) + extent_map_block_len(em) < extent_map_block_start(em)) return (u64)-1; return extent_map_block_start(em) + extent_map_block_len(em); } static bool can_merge_extent_map(const struct extent_map *em) { if (em->flags & EXTENT_FLAG_PINNED) return false; /* Don't merge compressed extents, we need to know their actual size. */ if (extent_map_is_compressed(em)) return false; if (em->flags & EXTENT_FLAG_LOGGING) return false; /* * We don't want to merge stuff that hasn't been written to the log yet * since it may not reflect exactly what is on disk, and that would be * bad. */ if (!list_empty(&em->list)) return false; return true; } /* Check to see if two extent_map structs are adjacent and safe to merge. */ static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next) { if (extent_map_end(prev) != next->start) return false; if (prev->flags != next->flags) return false; if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1) return extent_map_block_start(next) == extent_map_block_end(prev); /* HOLES and INLINE extents. */ return next->disk_bytenr == prev->disk_bytenr; } /* * Handle the on-disk data extents merge for @prev and @next. * * Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes. * For now only uncompressed regular extent can be merged. * * @prev and @next will be both updated to point to the new merged range. * Thus one of them should be removed by the caller. */ static void merge_ondisk_extents(struct extent_map *prev, struct extent_map *next) { u64 new_disk_bytenr; u64 new_disk_num_bytes; u64 new_offset; /* @prev and @next should not be compressed. */ ASSERT(!extent_map_is_compressed(prev)); ASSERT(!extent_map_is_compressed(next)); /* * There are two different cases where @prev and @next can be merged. * * 1) They are referring to the same data extent: * * |<----- data extent A ----->| * |<- prev ->|<- next ->| * * 2) They are referring to different data extents but still adjacent: * * |<-- data extent A -->|<-- data extent B -->| * |<- prev ->|<- next ->| * * The calculation here always merges the data extents first, then updates * @offset using the new data extents. * * For case 1), the merged data extent would be the same. * For case 2), we just merge the two data extents into one. */ new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr); new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes, next->disk_bytenr + next->disk_num_bytes) - new_disk_bytenr; new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr; prev->disk_bytenr = new_disk_bytenr; prev->disk_num_bytes = new_disk_num_bytes; prev->ram_bytes = new_disk_num_bytes; prev->offset = new_offset; next->disk_bytenr = new_disk_bytenr; next->disk_num_bytes = new_disk_num_bytes; next->ram_bytes = new_disk_num_bytes; next->offset = new_offset; } static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix, struct extent_map *em) { if (!IS_ENABLED(CONFIG_BTRFS_DEBUG)) return; btrfs_crit(fs_info, "%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x", prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes, em->ram_bytes, em->offset, em->flags); ASSERT(0); } /* Internal sanity checks for btrfs debug builds. */ static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em) { if (!IS_ENABLED(CONFIG_BTRFS_DEBUG)) return; if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { if (em->disk_num_bytes == 0) dump_extent_map(fs_info, "zero disk_num_bytes", em); if (em->offset + em->len > em->ram_bytes) dump_extent_map(fs_info, "ram_bytes too small", em); if (em->offset + em->len > em->disk_num_bytes && !extent_map_is_compressed(em)) dump_extent_map(fs_info, "disk_num_bytes too small", em); if (!extent_map_is_compressed(em) && em->ram_bytes != em->disk_num_bytes) dump_extent_map(fs_info, "ram_bytes mismatch with disk_num_bytes for non-compressed em", em); } else if (em->offset) { dump_extent_map(fs_info, "non-zero offset for hole/inline", em); } } static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct extent_map_tree *tree = &inode->extent_tree; struct extent_map *merge = NULL; struct rb_node *rb; /* * We can't modify an extent map that is in the tree and that is being * used by another task, as it can cause that other task to see it in * inconsistent state during the merging. We always have 1 reference for * the tree and 1 for this task (which is unpinning the extent map or * clearing the logging flag), so anything > 2 means it's being used by * other tasks too. */ if (refcount_read(&em->refs) > 2) return; if (!can_merge_extent_map(em)) return; if (em->start != 0) { rb = rb_prev(&em->rb_node); if (rb) merge = rb_entry(rb, struct extent_map, rb_node); if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) { em->start = merge->start; em->len += merge->len; em->generation = max(em->generation, merge->generation); if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) merge_ondisk_extents(merge, em); em->flags |= EXTENT_FLAG_MERGED; validate_extent_map(fs_info, em); rb_erase(&merge->rb_node, &tree->root); RB_CLEAR_NODE(&merge->rb_node); free_extent_map(merge); dec_evictable_extent_maps(inode); } } rb = rb_next(&em->rb_node); if (rb) merge = rb_entry(rb, struct extent_map, rb_node); if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) { em->len += merge->len; if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) merge_ondisk_extents(em, merge); validate_extent_map(fs_info, em); rb_erase(&merge->rb_node, &tree->root); RB_CLEAR_NODE(&merge->rb_node); em->generation = max(em->generation, merge->generation); em->flags |= EXTENT_FLAG_MERGED; free_extent_map(merge); dec_evictable_extent_maps(inode); } } /* * Unpin an extent from the cache. * * @inode: the inode from which we are unpinning an extent range * @start: logical offset in the file * @len: length of the extent * @gen: generation that this extent has been modified in * * Called after an extent has been written to disk properly. Set the generation * to the generation that actually added the file item to the inode so we know * we need to sync this extent when we call fsync(). * * Returns: 0 on success * -ENOENT when the extent is not found in the tree * -EUCLEAN if the found extent does not match the expected start */ int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct extent_map_tree *tree = &inode->extent_tree; int ret = 0; struct extent_map *em; write_lock(&tree->lock); em = lookup_extent_mapping(tree, start, len); if (WARN_ON(!em)) { btrfs_warn(fs_info, "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu", btrfs_ino(inode), btrfs_root_id(inode->root), start, start + len, gen); ret = -ENOENT; goto out; } if (WARN_ON(em->start != start)) { btrfs_warn(fs_info, "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu", btrfs_ino(inode), btrfs_root_id(inode->root), em->start, start, start + len, gen); ret = -EUCLEAN; goto out; } em->generation = gen; em->flags &= ~EXTENT_FLAG_PINNED; try_merge_map(inode, em); out: write_unlock(&tree->lock); free_extent_map(em); return ret; } void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em) { lockdep_assert_held_write(&inode->extent_tree.lock); em->flags &= ~EXTENT_FLAG_LOGGING; if (extent_map_in_tree(em)) try_merge_map(inode, em); } static inline void setup_extent_mapping(struct btrfs_inode *inode, struct extent_map *em, int modified) { refcount_inc(&em->refs); ASSERT(list_empty(&em->list)); if (modified) list_add(&em->list, &inode->extent_tree.modified_extents); else try_merge_map(inode, em); } /* * Add a new extent map to an inode's extent map tree. * * @inode: the target inode * @em: map to insert * @modified: indicate whether the given @em should be added to the * modified list, which indicates the extent needs to be logged * * Insert @em into the @inode's extent map tree or perform a simple * forward/backward merge with existing mappings. The extent_map struct passed * in will be inserted into the tree directly, with an additional reference * taken, or a reference dropped if the merge attempt was successful. */ static int add_extent_mapping(struct btrfs_inode *inode, struct extent_map *em, int modified) { struct extent_map_tree *tree = &inode->extent_tree; struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; int ret; lockdep_assert_held_write(&tree->lock); validate_extent_map(fs_info, em); ret = tree_insert(&tree->root, em); if (ret) return ret; setup_extent_mapping(inode, em, modified); if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root))) percpu_counter_inc(&fs_info->evictable_extent_maps); return 0; } static struct extent_map * __lookup_extent_mapping(struct extent_map_tree *tree, u64 start, u64 len, int strict) { struct extent_map *em; struct rb_node *rb_node; struct rb_node *prev_or_next = NULL; u64 end = range_end(start, len); rb_node = __tree_search(&tree->root, start, &prev_or_next); if (!rb_node) { if (prev_or_next) rb_node = prev_or_next; else return NULL; } em = rb_entry(rb_node, struct extent_map, rb_node); if (strict && !(end > em->start && start < extent_map_end(em))) return NULL; refcount_inc(&em->refs); return em; } /* * Lookup extent_map that intersects @start + @len range. * * @tree: tree to lookup in * @start: byte offset to start the search * @len: length of the lookup range * * Find and return the first extent_map struct in @tree that intersects the * [start, len] range. There may be additional objects in the tree that * intersect, so check the object returned carefully to make sure that no * additional lookups are needed. */ struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree, u64 start, u64 len) { return __lookup_extent_mapping(tree, start, len, 1); } /* * Find a nearby extent map intersecting @start + @len (not an exact search). * * @tree: tree to lookup in * @start: byte offset to start the search * @len: length of the lookup range * * Find and return the first extent_map struct in @tree that intersects the * [start, len] range. * * If one can't be found, any nearby extent may be returned */ struct extent_map *search_extent_mapping(struct extent_map_tree *tree, u64 start, u64 len) { return __lookup_extent_mapping(tree, start, len, 0); } /* * Remove an extent_map from its inode's extent tree. * * @inode: the inode the extent map belongs to * @em: extent map being removed * * Remove @em from the extent tree of @inode. No reference counts are dropped, * and no checks are done to see if the range is in use. */ void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em) { struct extent_map_tree *tree = &inode->extent_tree; lockdep_assert_held_write(&tree->lock); WARN_ON(em->flags & EXTENT_FLAG_PINNED); rb_erase(&em->rb_node, &tree->root); if (!(em->flags & EXTENT_FLAG_LOGGING)) list_del_init(&em->list); RB_CLEAR_NODE(&em->rb_node); dec_evictable_extent_maps(inode); } static void replace_extent_mapping(struct btrfs_inode *inode, struct extent_map *cur, struct extent_map *new, int modified) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct extent_map_tree *tree = &inode->extent_tree; lockdep_assert_held_write(&tree->lock); validate_extent_map(fs_info, new); WARN_ON(cur->flags & EXTENT_FLAG_PINNED); ASSERT(extent_map_in_tree(cur)); if (!(cur->flags & EXTENT_FLAG_LOGGING)) list_del_init(&cur->list); rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root); RB_CLEAR_NODE(&cur->rb_node); setup_extent_mapping(inode, new, modified); } static struct extent_map *next_extent_map(const struct extent_map *em) { struct rb_node *next; next = rb_next(&em->rb_node); if (!next) return NULL; return container_of(next, struct extent_map, rb_node); } static struct extent_map *prev_extent_map(struct extent_map *em) { struct rb_node *prev; prev = rb_prev(&em->rb_node); if (!prev) return NULL; return container_of(prev, struct extent_map, rb_node); } /* * Helper for btrfs_get_extent. Given an existing extent in the tree, * the existing extent is the nearest extent to map_start, * and an extent that you want to insert, deal with overlap and insert * the best fitted new extent into the tree. */ static noinline int merge_extent_mapping(struct btrfs_inode *inode, struct extent_map *existing, struct extent_map *em, u64 map_start) { struct extent_map *prev; struct extent_map *next; u64 start; u64 end; u64 start_diff; if (map_start < em->start || map_start >= extent_map_end(em)) return -EINVAL; if (existing->start > map_start) { next = existing; prev = prev_extent_map(next); } else { prev = existing; next = next_extent_map(prev); } start = prev ? extent_map_end(prev) : em->start; start = max_t(u64, start, em->start); end = next ? next->start : extent_map_end(em); end = min_t(u64, end, extent_map_end(em)); start_diff = start - em->start; em->start = start; em->len = end - start; if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) em->offset += start_diff; return add_extent_mapping(inode, em, 0); } /* * Add extent mapping into an inode's extent map tree. * * @inode: target inode * @em_in: extent we are inserting * @start: start of the logical range btrfs_get_extent() is requesting * @len: length of the logical range btrfs_get_extent() is requesting * * Note that @em_in's range may be different from [start, start+len), * but they must be overlapped. * * Insert @em_in into the inode's extent map tree. In case there is an * overlapping range, handle the -EEXIST by either: * a) Returning the existing extent in @em_in if @start is within the * existing em. * b) Merge the existing extent with @em_in passed in. * * Return 0 on success, otherwise -EEXIST. * */ int btrfs_add_extent_mapping(struct btrfs_inode *inode, struct extent_map **em_in, u64 start, u64 len) { int ret; struct extent_map *em = *em_in; struct btrfs_fs_info *fs_info = inode->root->fs_info; /* * Tree-checker should have rejected any inline extent with non-zero * file offset. Here just do a sanity check. */ if (em->disk_bytenr == EXTENT_MAP_INLINE) ASSERT(em->start == 0); ret = add_extent_mapping(inode, em, 0); /* it is possible that someone inserted the extent into the tree * while we had the lock dropped. It is also possible that * an overlapping map exists in the tree */ if (ret == -EEXIST) { struct extent_map *existing; existing = search_extent_mapping(&inode->extent_tree, start, len); trace_btrfs_handle_em_exist(fs_info, existing, em, start, len); /* * existing will always be non-NULL, since there must be * extent causing the -EEXIST. */ if (start >= existing->start && start < extent_map_end(existing)) { free_extent_map(em); *em_in = existing; ret = 0; } else { u64 orig_start = em->start; u64 orig_len = em->len; /* * The existing extent map is the one nearest to * the [start, start + len) range which overlaps */ ret = merge_extent_mapping(inode, existing, em, start); if (WARN_ON(ret)) { free_extent_map(em); *em_in = NULL; btrfs_warn(fs_info, "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu", existing->start, extent_map_end(existing), orig_start, orig_start + orig_len, start); } free_extent_map(existing); } } ASSERT(ret == 0 || ret == -EEXIST); return ret; } /* * Drop all extent maps from a tree in the fastest possible way, rescheduling * if needed. This avoids searching the tree, from the root down to the first * extent map, before each deletion. */ static void drop_all_extent_maps_fast(struct btrfs_inode *inode) { struct extent_map_tree *tree = &inode->extent_tree; struct rb_node *node; write_lock(&tree->lock); node = rb_first(&tree->root); while (node) { struct extent_map *em; struct rb_node *next = rb_next(node); em = rb_entry(node, struct extent_map, rb_node); em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING); remove_extent_mapping(inode, em); free_extent_map(em); if (cond_resched_rwlock_write(&tree->lock)) node = rb_first(&tree->root); else node = next; } write_unlock(&tree->lock); } /* * Drop all extent maps in a given range. * * @inode: The target inode. * @start: Start offset of the range. * @end: End offset of the range (inclusive value). * @skip_pinned: Indicate if pinned extent maps should be ignored or not. * * This drops all the extent maps that intersect the given range [@start, @end]. * Extent maps that partially overlap the range and extend behind or beyond it, * are split. * The caller should have locked an appropriate file range in the inode's io * tree before calling this function. */ void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end, bool skip_pinned) { struct extent_map *split; struct extent_map *split2; struct extent_map *em; struct extent_map_tree *em_tree = &inode->extent_tree; u64 len = end - start + 1; WARN_ON(end < start); if (end == (u64)-1) { if (start == 0 && !skip_pinned) { drop_all_extent_maps_fast(inode); return; } len = (u64)-1; } else { /* Make end offset exclusive for use in the loop below. */ end++; } /* * It's ok if we fail to allocate the extent maps, see the comment near * the bottom of the loop below. We only need two spare extent maps in * the worst case, where the first extent map that intersects our range * starts before the range and the last extent map that intersects our * range ends after our range (and they might be the same extent map), * because we need to split those two extent maps at the boundaries. */ split = alloc_extent_map(); split2 = alloc_extent_map(); write_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, len); while (em) { /* extent_map_end() returns exclusive value (last byte + 1). */ const u64 em_end = extent_map_end(em); struct extent_map *next_em = NULL; u64 gen; unsigned long flags; bool modified; if (em_end < end) { next_em = next_extent_map(em); if (next_em) { if (next_em->start < end) refcount_inc(&next_em->refs); else next_em = NULL; } } if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) { start = em_end; goto next; } flags = em->flags; /* * In case we split the extent map, we want to preserve the * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want * it on the new extent maps. */ em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING); modified = !list_empty(&em->list); /* * The extent map does not cross our target range, so no need to * split it, we can remove it directly. */ if (em->start >= start && em_end <= end) goto remove_em; gen = em->generation; if (em->start < start) { if (!split) { split = split2; split2 = NULL; if (!split) goto remove_em; } split->start = em->start; split->len = start - em->start; if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { split->disk_bytenr = em->disk_bytenr; split->disk_num_bytes = em->disk_num_bytes; split->offset = em->offset; split->ram_bytes = em->ram_bytes; } else { split->disk_bytenr = em->disk_bytenr; split->disk_num_bytes = 0; split->offset = 0; split->ram_bytes = split->len; } split->generation = gen; split->flags = flags; replace_extent_mapping(inode, em, split, modified); free_extent_map(split); split = split2; split2 = NULL; } if (em_end > end) { if (!split) { split = split2; split2 = NULL; if (!split) goto remove_em; } split->start = end; split->len = em_end - end; split->disk_bytenr = em->disk_bytenr; split->flags = flags; split->generation = gen; if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { split->disk_num_bytes = em->disk_num_bytes; split->offset = em->offset + end - em->start; split->ram_bytes = em->ram_bytes; } else { split->disk_num_bytes = 0; split->offset = 0; split->ram_bytes = split->len; } if (extent_map_in_tree(em)) { replace_extent_mapping(inode, em, split, modified); } else { int ret; ret = add_extent_mapping(inode, split, modified); /* Logic error, shouldn't happen. */ ASSERT(ret == 0); if (WARN_ON(ret != 0) && modified) btrfs_set_inode_full_sync(inode); } free_extent_map(split); split = NULL; } remove_em: if (extent_map_in_tree(em)) { /* * If the extent map is still in the tree it means that * either of the following is true: * * 1) It fits entirely in our range (doesn't end beyond * it or starts before it); * * 2) It starts before our range and/or ends after our * range, and we were not able to allocate the extent * maps for split operations, @split and @split2. * * If we are at case 2) then we just remove the entire * extent map - this is fine since if anyone needs it to * access the subranges outside our range, will just * load it again from the subvolume tree's file extent * item. However if the extent map was in the list of * modified extents, then we must mark the inode for a * full fsync, otherwise a fast fsync will miss this * extent if it's new and needs to be logged. */ if ((em->start < start || em_end > end) && modified) { ASSERT(!split); btrfs_set_inode_full_sync(inode); } remove_extent_mapping(inode, em); } /* * Once for the tree reference (we replaced or removed the * extent map from the tree). */ free_extent_map(em); next: /* Once for us (for our lookup reference). */ free_extent_map(em); em = next_em; } write_unlock(&em_tree->lock); free_extent_map(split); free_extent_map(split2); } /* * Replace a range in the inode's extent map tree with a new extent map. * * @inode: The target inode. * @new_em: The new extent map to add to the inode's extent map tree. * @modified: Indicate if the new extent map should be added to the list of * modified extents (for fast fsync tracking). * * Drops all the extent maps in the inode's extent map tree that intersect the * range of the new extent map and adds the new extent map to the tree. * The caller should have locked an appropriate file range in the inode's io * tree before calling this function. */ int btrfs_replace_extent_map_range(struct btrfs_inode *inode, struct extent_map *new_em, bool modified) { const u64 end = new_em->start + new_em->len - 1; struct extent_map_tree *tree = &inode->extent_tree; int ret; ASSERT(!extent_map_in_tree(new_em)); /* * The caller has locked an appropriate file range in the inode's io * tree, but getting -EEXIST when adding the new extent map can still * happen in case there are extents that partially cover the range, and * this is due to two tasks operating on different parts of the extent. * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from * btrfs_get_extent") for an example and details. */ do { btrfs_drop_extent_map_range(inode, new_em->start, end, false); write_lock(&tree->lock); ret = add_extent_mapping(inode, new_em, modified); write_unlock(&tree->lock); } while (ret == -EEXIST); return ret; } /* * Split off the first pre bytes from the extent_map at [start, start + len], * and set the block_start for it to new_logical. * * This function is used when an ordered_extent needs to be split. */ int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre, u64 new_logical) { struct extent_map_tree *em_tree = &inode->extent_tree; struct extent_map *em; struct extent_map *split_pre = NULL; struct extent_map *split_mid = NULL; int ret = 0; unsigned long flags; ASSERT(pre != 0); ASSERT(pre < len); split_pre = alloc_extent_map(); if (!split_pre) return -ENOMEM; split_mid = alloc_extent_map(); if (!split_mid) { ret = -ENOMEM; goto out_free_pre; } lock_extent(&inode->io_tree, start, start + len - 1, NULL); write_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, len); if (!em) { ret = -EIO; goto out_unlock; } ASSERT(em->len == len); ASSERT(!extent_map_is_compressed(em)); ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE); ASSERT(em->flags & EXTENT_FLAG_PINNED); ASSERT(!(em->flags & EXTENT_FLAG_LOGGING)); ASSERT(!list_empty(&em->list)); flags = em->flags; em->flags &= ~EXTENT_FLAG_PINNED; /* First, replace the em with a new extent_map starting from * em->start */ split_pre->start = em->start; split_pre->len = pre; split_pre->disk_bytenr = new_logical; split_pre->disk_num_bytes = split_pre->len; split_pre->offset = 0; split_pre->ram_bytes = split_pre->len; split_pre->flags = flags; split_pre->generation = em->generation; replace_extent_mapping(inode, em, split_pre, 1); /* * Now we only have an extent_map at: * [em->start, em->start + pre] */ /* Insert the middle extent_map. */ split_mid->start = em->start + pre; split_mid->len = em->len - pre; split_mid->disk_bytenr = extent_map_block_start(em) + pre; split_mid->disk_num_bytes = split_mid->len; split_mid->offset = 0; split_mid->ram_bytes = split_mid->len; split_mid->flags = flags; split_mid->generation = em->generation; add_extent_mapping(inode, split_mid, 1); /* Once for us */ free_extent_map(em); /* Once for the tree */ free_extent_map(em); out_unlock: write_unlock(&em_tree->lock); unlock_extent(&inode->io_tree, start, start + len - 1, NULL); free_extent_map(split_mid); out_free_pre: free_extent_map(split_pre); return ret; } struct btrfs_em_shrink_ctx { long nr_to_scan; long scanned; u64 last_ino; u64 last_root; }; static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx) { const u64 cur_fs_gen = btrfs_get_fs_generation(inode->root->fs_info); struct extent_map_tree *tree = &inode->extent_tree; long nr_dropped = 0; struct rb_node *node; /* * Take the mmap lock so that we serialize with the inode logging phase * of fsync because we may need to set the full sync flag on the inode, * in case we have to remove extent maps in the tree's list of modified * extents. If we set the full sync flag in the inode while an fsync is * in progress, we may risk missing new extents because before the flag * is set, fsync decides to only wait for writeback to complete and then * during inode logging it sees the flag set and uses the subvolume tree * to find new extents, which may not be there yet because ordered * extents haven't completed yet. * * We also do a try lock because otherwise we could deadlock. This is * because the shrinker for this filesystem may be invoked while we are * in a path that is holding the mmap lock in write mode. For example in * a reflink operation while COWing an extent buffer, when allocating * pages for a new extent buffer and under memory pressure, the shrinker * may be invoked, and therefore we would deadlock by attempting to read * lock the mmap lock while we are holding already a write lock on it. */ if (!down_read_trylock(&inode->i_mmap_lock)) return 0; /* * We want to be fast so if the lock is busy we don't want to spend time * waiting for it - either some task is about to do IO for the inode or * we may have another task shrinking extent maps, here in this code, so * skip this inode. */ if (!write_trylock(&tree->lock)) { up_read(&inode->i_mmap_lock); return 0; } node = rb_first(&tree->root); while (node) { struct rb_node *next = rb_next(node); struct extent_map *em; em = rb_entry(node, struct extent_map, rb_node); ctx->scanned++; if (em->flags & EXTENT_FLAG_PINNED) goto next; /* * If the inode is in the list of modified extents (new) and its * generation is the same (or is greater than) the current fs * generation, it means it was not yet persisted so we have to * set the full sync flag so that the next fsync will not miss * it. */ if (!list_empty(&em->list) && em->generation >= cur_fs_gen) btrfs_set_inode_full_sync(inode); remove_extent_mapping(inode, em); trace_btrfs_extent_map_shrinker_remove_em(inode, em); /* Drop the reference for the tree. */ free_extent_map(em); nr_dropped++; next: if (ctx->scanned >= ctx->nr_to_scan) break; /* * Stop if we need to reschedule or there's contention on the * lock. This is to avoid slowing other tasks trying to take the * lock. */ if (need_resched() || rwlock_needbreak(&tree->lock)) break; node = next; } write_unlock(&tree->lock); up_read(&inode->i_mmap_lock); return nr_dropped; } static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx) { struct btrfs_inode *inode; long nr_dropped = 0; u64 min_ino = ctx->last_ino + 1; inode = btrfs_find_first_inode(root, min_ino); while (inode) { nr_dropped += btrfs_scan_inode(inode, ctx); min_ino = btrfs_ino(inode) + 1; ctx->last_ino = btrfs_ino(inode); btrfs_add_delayed_iput(inode); if (ctx->scanned >= ctx->nr_to_scan) break; cond_resched(); inode = btrfs_find_first_inode(root, min_ino); } if (inode) { /* * There are still inodes in this root or we happened to process * the last one and reached the scan limit. In either case set * the current root to this one, so we'll resume from the next * inode if there is one or we will find out this was the last * one and move to the next root. */ ctx->last_root = btrfs_root_id(root); } else { /* * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so * that when processing the next root we start from its first inode. */ ctx->last_ino = 0; ctx->last_root = btrfs_root_id(root) + 1; } return nr_dropped; } long btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan) { struct btrfs_em_shrink_ctx ctx; u64 start_root_id; u64 next_root_id; bool cycled = false; long nr_dropped = 0; ctx.scanned = 0; ctx.nr_to_scan = nr_to_scan; /* * In case we have multiple tasks running this shrinker, make the next * one start from the next inode in case it starts before we finish. */ spin_lock(&fs_info->extent_map_shrinker_lock); ctx.last_ino = fs_info->extent_map_shrinker_last_ino; fs_info->extent_map_shrinker_last_ino++; ctx.last_root = fs_info->extent_map_shrinker_last_root; spin_unlock(&fs_info->extent_map_shrinker_lock); start_root_id = ctx.last_root; next_root_id = ctx.last_root; if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) { s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr_to_scan, nr, ctx.last_root, ctx.last_ino); } while (ctx.scanned < ctx.nr_to_scan) { struct btrfs_root *root; unsigned long count; cond_resched(); spin_lock(&fs_info->fs_roots_radix_lock); count = radix_tree_gang_lookup(&fs_info->fs_roots_radix, (void **)&root, (unsigned long)next_root_id, 1); if (count == 0) { spin_unlock(&fs_info->fs_roots_radix_lock); if (start_root_id > 0 && !cycled) { next_root_id = 0; ctx.last_root = 0; ctx.last_ino = 0; cycled = true; continue; } break; } next_root_id = btrfs_root_id(root) + 1; root = btrfs_grab_root(root); spin_unlock(&fs_info->fs_roots_radix_lock); if (!root) continue; if (is_fstree(btrfs_root_id(root))) nr_dropped += btrfs_scan_root(root, &ctx); btrfs_put_root(root); } /* * In case of multiple tasks running this extent map shrinking code this * isn't perfect but it's simple and silences things like KCSAN. It's * not possible to know which task made more progress because we can * cycle back to the first root and first inode if it's not the first * time the shrinker ran, see the above logic. Also a task that started * later may finish ealier than another task and made less progress. So * make this simple and update to the progress of the last task that * finished, with the occasional possiblity of having two consecutive * runs of the shrinker process the same inodes. */ spin_lock(&fs_info->extent_map_shrinker_lock); fs_info->extent_map_shrinker_last_ino = ctx.last_ino; fs_info->extent_map_shrinker_last_root = ctx.last_root; spin_unlock(&fs_info->extent_map_shrinker_lock); if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) { s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped, nr, ctx.last_root, ctx.last_ino); } return nr_dropped; }