// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Broadcom MPI3 Storage Controllers * * Copyright (C) 2017-2023 Broadcom Inc. * (mailto: mpi3mr-linuxdrv.pdl@broadcom.com) * */ #include "mpi3mr.h" #include #include /** * mpi3mr_alloc_trace_buffer: Allocate trace buffer * @mrioc: Adapter instance reference * @trace_size: Trace buffer size * * Allocate trace buffer * Return: 0 on success, non-zero on failure. */ static int mpi3mr_alloc_trace_buffer(struct mpi3mr_ioc *mrioc, u32 trace_size) { struct diag_buffer_desc *diag_buffer = &mrioc->diag_buffers[0]; diag_buffer->addr = dma_alloc_coherent(&mrioc->pdev->dev, trace_size, &diag_buffer->dma_addr, GFP_KERNEL); if (diag_buffer->addr) { dprint_init(mrioc, "trace diag buffer is allocated successfully\n"); return 0; } return -1; } /** * mpi3mr_alloc_diag_bufs - Allocate memory for diag buffers * @mrioc: Adapter instance reference * * This functions checks whether the driver defined buffer sizes * are greater than IOCFacts provided controller local buffer * sizes and if the driver defined sizes are more then the * driver allocates the specific buffer by reading driver page1 * * Return: Nothing. */ void mpi3mr_alloc_diag_bufs(struct mpi3mr_ioc *mrioc) { struct diag_buffer_desc *diag_buffer; struct mpi3_driver_page1 driver_pg1; u32 trace_dec_size, trace_min_size, fw_dec_size, fw_min_size, trace_size, fw_size; u16 pg_sz = sizeof(driver_pg1); int retval = 0; bool retry = false; if (mrioc->diag_buffers[0].addr || mrioc->diag_buffers[1].addr) return; retval = mpi3mr_cfg_get_driver_pg1(mrioc, &driver_pg1, pg_sz); if (retval) { ioc_warn(mrioc, "%s: driver page 1 read failed, allocating trace\n" "and firmware diag buffers of default size\n", __func__); trace_size = fw_size = MPI3MR_DEFAULT_HDB_MAX_SZ; trace_dec_size = fw_dec_size = MPI3MR_DEFAULT_HDB_DEC_SZ; trace_min_size = fw_min_size = MPI3MR_DEFAULT_HDB_MIN_SZ; } else { trace_size = driver_pg1.host_diag_trace_max_size * 1024; trace_dec_size = driver_pg1.host_diag_trace_decrement_size * 1024; trace_min_size = driver_pg1.host_diag_trace_min_size * 1024; fw_size = driver_pg1.host_diag_fw_max_size * 1024; fw_dec_size = driver_pg1.host_diag_fw_decrement_size * 1024; fw_min_size = driver_pg1.host_diag_fw_min_size * 1024; dprint_init(mrioc, "%s:trace diag buffer sizes read from driver\n" "page1: maximum size = %dKB, decrement size = %dKB\n" ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_trace_max_size, driver_pg1.host_diag_trace_decrement_size, driver_pg1.host_diag_trace_min_size); dprint_init(mrioc, "%s:firmware diag buffer sizes read from driver\n" "page1: maximum size = %dKB, decrement size = %dKB\n" ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_fw_max_size, driver_pg1.host_diag_fw_decrement_size, driver_pg1.host_diag_fw_min_size); if ((trace_size == 0) && (fw_size == 0)) return; } retry_trace: diag_buffer = &mrioc->diag_buffers[0]; diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_TRACE; diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED; if ((mrioc->facts.diag_trace_sz < trace_size) && (trace_size >= trace_min_size)) { if (!retry) dprint_init(mrioc, "trying to allocate trace diag buffer of size = %dKB\n", trace_size / 1024); if (get_order(trace_size) > MAX_PAGE_ORDER || mpi3mr_alloc_trace_buffer(mrioc, trace_size)) { retry = true; trace_size -= trace_dec_size; dprint_init(mrioc, "trace diag buffer allocation failed\n" "retrying smaller size %dKB\n", trace_size / 1024); goto retry_trace; } else diag_buffer->size = trace_size; } retry = false; retry_fw: diag_buffer = &mrioc->diag_buffers[1]; diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_FW; diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED; if ((mrioc->facts.diag_fw_sz < fw_size) && (fw_size >= fw_min_size)) { if (get_order(fw_size) <= MAX_PAGE_ORDER) { diag_buffer->addr = dma_alloc_coherent(&mrioc->pdev->dev, fw_size, &diag_buffer->dma_addr, GFP_KERNEL); } if (!retry) dprint_init(mrioc, "%s:trying to allocate firmware diag buffer of size = %dKB\n", __func__, fw_size / 1024); if (diag_buffer->addr) { dprint_init(mrioc, "%s:firmware diag buffer allocated successfully\n", __func__); diag_buffer->size = fw_size; } else { retry = true; fw_size -= fw_dec_size; dprint_init(mrioc, "%s:trace diag buffer allocation failed,\n" "retrying smaller size %dKB\n", __func__, fw_size / 1024); goto retry_fw; } } } /** * mpi3mr_issue_diag_buf_post - Send diag buffer post req * @mrioc: Adapter instance reference * @diag_buffer: Diagnostic buffer descriptor * * Issue diagnostic buffer post MPI request through admin queue * and wait for the completion of it or time out. * * Return: 0 on success, non-zero on failures. */ int mpi3mr_issue_diag_buf_post(struct mpi3mr_ioc *mrioc, struct diag_buffer_desc *diag_buffer) { struct mpi3_diag_buffer_post_request diag_buf_post_req; u8 prev_status; int retval = 0; memset(&diag_buf_post_req, 0, sizeof(diag_buf_post_req)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { dprint_bsg_err(mrioc, "%s: command is in use\n", __func__); mutex_unlock(&mrioc->init_cmds.mutex); return -1; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; diag_buf_post_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); diag_buf_post_req.function = MPI3_FUNCTION_DIAG_BUFFER_POST; diag_buf_post_req.type = diag_buffer->type; diag_buf_post_req.address = le64_to_cpu(diag_buffer->dma_addr); diag_buf_post_req.length = le32_to_cpu(diag_buffer->size); dprint_bsg_info(mrioc, "%s: posting diag buffer type %d\n", __func__, diag_buffer->type); prev_status = diag_buffer->status; diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED; init_completion(&mrioc->init_cmds.done); retval = mpi3mr_admin_request_post(mrioc, &diag_buf_post_req, sizeof(diag_buf_post_req), 1); if (retval) { dprint_bsg_err(mrioc, "%s: admin request post failed\n", __func__); goto out_unlock; } wait_for_completion_timeout(&mrioc->init_cmds.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { mrioc->init_cmds.is_waiting = 0; dprint_bsg_err(mrioc, "%s: command timedout\n", __func__); mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_DIAG_BUFFER_POST_TIMEOUT); retval = -1; goto out_unlock; } if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { dprint_bsg_err(mrioc, "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n", __func__, diag_buffer->type, (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->init_cmds.ioc_loginfo); retval = -1; goto out_unlock; } dprint_bsg_info(mrioc, "%s: diag buffer type %d posted successfully\n", __func__, diag_buffer->type); out_unlock: if (retval) diag_buffer->status = prev_status; mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); return retval; } /** * mpi3mr_post_diag_bufs - Post diag buffers to the controller * @mrioc: Adapter instance reference * * This function calls helper function to post both trace and * firmware buffers to the controller. * * Return: None */ int mpi3mr_post_diag_bufs(struct mpi3mr_ioc *mrioc) { u8 i; struct diag_buffer_desc *diag_buffer; for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) { diag_buffer = &mrioc->diag_buffers[i]; if (!(diag_buffer->addr)) continue; if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer)) return -1; } return 0; } /** * mpi3mr_issue_diag_buf_release - Send diag buffer release req * @mrioc: Adapter instance reference * @diag_buffer: Diagnostic buffer descriptor * * Issue diagnostic buffer manage MPI request with release * action request through admin queue and wait for the * completion of it or time out. * * Return: 0 on success, non-zero on failures. */ int mpi3mr_issue_diag_buf_release(struct mpi3mr_ioc *mrioc, struct diag_buffer_desc *diag_buffer) { struct mpi3_diag_buffer_manage_request diag_buf_manage_req; int retval = 0; if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) && (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED)) return retval; memset(&diag_buf_manage_req, 0, sizeof(diag_buf_manage_req)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { dprint_reset(mrioc, "%s: command is in use\n", __func__); mutex_unlock(&mrioc->init_cmds.mutex); return -1; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; diag_buf_manage_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); diag_buf_manage_req.function = MPI3_FUNCTION_DIAG_BUFFER_MANAGE; diag_buf_manage_req.type = diag_buffer->type; diag_buf_manage_req.action = MPI3_DIAG_BUFFER_ACTION_RELEASE; dprint_reset(mrioc, "%s: releasing diag buffer type %d\n", __func__, diag_buffer->type); init_completion(&mrioc->init_cmds.done); retval = mpi3mr_admin_request_post(mrioc, &diag_buf_manage_req, sizeof(diag_buf_manage_req), 1); if (retval) { dprint_reset(mrioc, "%s: admin request post failed\n", __func__); mpi3mr_set_trigger_data_in_hdb(diag_buffer, MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1); goto out_unlock; } wait_for_completion_timeout(&mrioc->init_cmds.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { mrioc->init_cmds.is_waiting = 0; dprint_reset(mrioc, "%s: command timedout\n", __func__); mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_DIAG_BUFFER_RELEASE_TIMEOUT); retval = -1; goto out_unlock; } if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { dprint_reset(mrioc, "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n", __func__, diag_buffer->type, (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->init_cmds.ioc_loginfo); retval = -1; goto out_unlock; } dprint_reset(mrioc, "%s: diag buffer type %d released successfully\n", __func__, diag_buffer->type); out_unlock: mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); return retval; } /** * mpi3mr_process_trigger - Generic HDB Trigger handler * @mrioc: Adapter instance reference * @trigger_type: Trigger type * @trigger_data: Trigger data * @trigger_flags: Trigger flags * * This function checks validity of HDB, triggers and based on * trigger information, creates an event to be processed in the * firmware event worker thread . * * This function should be called with trigger spinlock held * * Return: Nothing */ static void mpi3mr_process_trigger(struct mpi3mr_ioc *mrioc, u8 trigger_type, union mpi3mr_trigger_data *trigger_data, u8 trigger_flags) { struct trigger_event_data event_data; struct diag_buffer_desc *trace_hdb = NULL; struct diag_buffer_desc *fw_hdb = NULL; u64 global_trigger; trace_hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_TRACE); if (trace_hdb && (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) && (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED)) trace_hdb = NULL; fw_hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW); if (fw_hdb && (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) && (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED)) fw_hdb = NULL; if (mrioc->snapdump_trigger_active || (mrioc->fw_release_trigger_active && mrioc->trace_release_trigger_active) || (!trace_hdb && !fw_hdb) || (!mrioc->driver_pg2) || ((trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT) && (!mrioc->driver_pg2->num_triggers))) return; memset(&event_data, 0, sizeof(event_data)); event_data.trigger_type = trigger_type; memcpy(&event_data.trigger_specific_data, trigger_data, sizeof(*trigger_data)); global_trigger = le64_to_cpu(mrioc->driver_pg2->global_trigger); if (global_trigger & MPI3_DRIVER2_GLOBALTRIGGER_SNAPDUMP_ENABLED) { event_data.snapdump = true; event_data.trace_hdb = trace_hdb; event_data.fw_hdb = fw_hdb; mrioc->snapdump_trigger_active = true; } else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_GLOBAL) { if ((trace_hdb) && (global_trigger & MPI3_DRIVER2_GLOBALTRIGGER_DIAG_TRACE_RELEASE) && (!mrioc->trace_release_trigger_active)) { event_data.trace_hdb = trace_hdb; mrioc->trace_release_trigger_active = true; } if ((fw_hdb) && (global_trigger & MPI3_DRIVER2_GLOBALTRIGGER_DIAG_FW_RELEASE) && (!mrioc->fw_release_trigger_active)) { event_data.fw_hdb = fw_hdb; mrioc->fw_release_trigger_active = true; } } else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT) { if ((trace_hdb) && (trigger_flags & MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_TRACE_RELEASE) && (!mrioc->trace_release_trigger_active)) { event_data.trace_hdb = trace_hdb; mrioc->trace_release_trigger_active = true; } if ((fw_hdb) && (trigger_flags & MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_FW_RELEASE) && (!mrioc->fw_release_trigger_active)) { event_data.fw_hdb = fw_hdb; mrioc->fw_release_trigger_active = true; } } if (event_data.trace_hdb || event_data.fw_hdb) mpi3mr_hdb_trigger_data_event(mrioc, &event_data); } /** * mpi3mr_global_trigger - Global HDB trigger handler * @mrioc: Adapter instance reference * @trigger_data: Trigger data * * This function checks whether the given global trigger is * enabled in the driver page 2 and if so calls generic trigger * handler to queue event for HDB release. * * Return: Nothing */ void mpi3mr_global_trigger(struct mpi3mr_ioc *mrioc, u64 trigger_data) { unsigned long flags; union mpi3mr_trigger_data trigger_specific_data; spin_lock_irqsave(&mrioc->trigger_lock, flags); if (le64_to_cpu(mrioc->driver_pg2->global_trigger) & trigger_data) { memset(&trigger_specific_data, 0, sizeof(trigger_specific_data)); trigger_specific_data.global = trigger_data; mpi3mr_process_trigger(mrioc, MPI3MR_HDB_TRIGGER_TYPE_GLOBAL, &trigger_specific_data, 0); } spin_unlock_irqrestore(&mrioc->trigger_lock, flags); } /** * mpi3mr_scsisense_trigger - SCSI sense HDB trigger handler * @mrioc: Adapter instance reference * @sensekey: Sense Key * @asc: Additional Sense Code * @ascq: Additional Sense Code Qualifier * * This function compares SCSI sense trigger values with driver * page 2 values and calls generic trigger handler to release * HDBs if match found * * Return: Nothing */ void mpi3mr_scsisense_trigger(struct mpi3mr_ioc *mrioc, u8 sensekey, u8 asc, u8 ascq) { struct mpi3_driver2_trigger_scsi_sense *scsi_sense_trigger = NULL; u64 i = 0; unsigned long flags; u8 num_triggers, trigger_flags; if (mrioc->scsisense_trigger_present) { spin_lock_irqsave(&mrioc->trigger_lock, flags); scsi_sense_trigger = (struct mpi3_driver2_trigger_scsi_sense *) mrioc->driver_pg2->trigger; num_triggers = mrioc->driver_pg2->num_triggers; for (i = 0; i < num_triggers; i++, scsi_sense_trigger++) { if (scsi_sense_trigger->type != MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE) continue; if (!(scsi_sense_trigger->sense_key == MPI3_DRIVER2_TRIGGER_SCSI_SENSE_SENSE_KEY_MATCH_ALL || scsi_sense_trigger->sense_key == sensekey)) continue; if (!(scsi_sense_trigger->asc == MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASC_MATCH_ALL || scsi_sense_trigger->asc == asc)) continue; if (!(scsi_sense_trigger->ascq == MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASCQ_MATCH_ALL || scsi_sense_trigger->ascq == ascq)) continue; trigger_flags = scsi_sense_trigger->flags; mpi3mr_process_trigger(mrioc, MPI3MR_HDB_TRIGGER_TYPE_ELEMENT, (union mpi3mr_trigger_data *)scsi_sense_trigger, trigger_flags); break; } spin_unlock_irqrestore(&mrioc->trigger_lock, flags); } } /** * mpi3mr_event_trigger - MPI event HDB trigger handler * @mrioc: Adapter instance reference * @event: MPI Event * * This function compares event trigger values with driver page * 2 values and calls generic trigger handler to release * HDBs if match found. * * Return: Nothing */ void mpi3mr_event_trigger(struct mpi3mr_ioc *mrioc, u8 event) { struct mpi3_driver2_trigger_event *event_trigger = NULL; u64 i = 0; unsigned long flags; u8 num_triggers, trigger_flags; if (mrioc->event_trigger_present) { spin_lock_irqsave(&mrioc->trigger_lock, flags); event_trigger = (struct mpi3_driver2_trigger_event *) mrioc->driver_pg2->trigger; num_triggers = mrioc->driver_pg2->num_triggers; for (i = 0; i < num_triggers; i++, event_trigger++) { if (event_trigger->type != MPI3_DRIVER2_TRIGGER_TYPE_EVENT) continue; if (event_trigger->event != event) continue; trigger_flags = event_trigger->flags; mpi3mr_process_trigger(mrioc, MPI3MR_HDB_TRIGGER_TYPE_ELEMENT, (union mpi3mr_trigger_data *)event_trigger, trigger_flags); break; } spin_unlock_irqrestore(&mrioc->trigger_lock, flags); } } /** * mpi3mr_reply_trigger - MPI Reply HDB trigger handler * @mrioc: Adapter instance reference * @ioc_status: Masked value of IOC Status from MPI Reply * @ioc_loginfo: IOC Log Info from MPI Reply * * This function compares IOC status and IOC log info trigger * values with driver page 2 values and calls generic trigger * handler to release HDBs if match found. * * Return: Nothing */ void mpi3mr_reply_trigger(struct mpi3mr_ioc *mrioc, u16 ioc_status, u32 ioc_loginfo) { struct mpi3_driver2_trigger_reply *reply_trigger = NULL; u64 i = 0; unsigned long flags; u8 num_triggers, trigger_flags; if (mrioc->reply_trigger_present) { spin_lock_irqsave(&mrioc->trigger_lock, flags); reply_trigger = (struct mpi3_driver2_trigger_reply *) mrioc->driver_pg2->trigger; num_triggers = mrioc->driver_pg2->num_triggers; for (i = 0; i < num_triggers; i++, reply_trigger++) { if (reply_trigger->type != MPI3_DRIVER2_TRIGGER_TYPE_REPLY) continue; if ((le16_to_cpu(reply_trigger->ioc_status) != ioc_status) && (le16_to_cpu(reply_trigger->ioc_status) != MPI3_DRIVER2_TRIGGER_REPLY_IOCSTATUS_MATCH_ALL)) continue; if ((le32_to_cpu(reply_trigger->ioc_log_info) != (le32_to_cpu(reply_trigger->ioc_log_info_mask) & ioc_loginfo))) continue; trigger_flags = reply_trigger->flags; mpi3mr_process_trigger(mrioc, MPI3MR_HDB_TRIGGER_TYPE_ELEMENT, (union mpi3mr_trigger_data *)reply_trigger, trigger_flags); break; } spin_unlock_irqrestore(&mrioc->trigger_lock, flags); } } /** * mpi3mr_get_num_trigger - Gets number of HDB triggers * @mrioc: Adapter instance reference * @num_triggers: Number of triggers * @page_action: Page action * * This function reads number of triggers by reading driver page * 2 * * Return: 0 on success and proper error codes on failure */ static int mpi3mr_get_num_trigger(struct mpi3mr_ioc *mrioc, u8 *num_triggers, u8 page_action) { struct mpi3_driver_page2 drvr_page2; int retval = 0; *num_triggers = 0; retval = mpi3mr_cfg_get_driver_pg2(mrioc, &drvr_page2, sizeof(struct mpi3_driver_page2), page_action); if (retval) { dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__); return retval; } *num_triggers = drvr_page2.num_triggers; return retval; } /** * mpi3mr_refresh_trigger - Handler for Refresh trigger BSG * @mrioc: Adapter instance reference * @page_action: Page action * * This function caches the driver page 2 in the driver's memory * by reading driver page 2 from the controller for a given page * type and updates the HDB trigger values * * Return: 0 on success and proper error codes on failure */ int mpi3mr_refresh_trigger(struct mpi3mr_ioc *mrioc, u8 page_action) { u16 pg_sz = sizeof(struct mpi3_driver_page2); struct mpi3_driver_page2 *drvr_page2 = NULL; u8 trigger_type, num_triggers; int retval; int i = 0; unsigned long flags; retval = mpi3mr_get_num_trigger(mrioc, &num_triggers, page_action); if (retval) goto out; pg_sz = offsetof(struct mpi3_driver_page2, trigger) + (num_triggers * sizeof(union mpi3_driver2_trigger_element)); drvr_page2 = kzalloc(pg_sz, GFP_KERNEL); if (!drvr_page2) { retval = -ENOMEM; goto out; } retval = mpi3mr_cfg_get_driver_pg2(mrioc, drvr_page2, pg_sz, page_action); if (retval) { dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__); kfree(drvr_page2); goto out; } spin_lock_irqsave(&mrioc->trigger_lock, flags); kfree(mrioc->driver_pg2); mrioc->driver_pg2 = drvr_page2; mrioc->reply_trigger_present = false; mrioc->event_trigger_present = false; mrioc->scsisense_trigger_present = false; for (i = 0; (i < mrioc->driver_pg2->num_triggers); i++) { trigger_type = mrioc->driver_pg2->trigger[i].event.type; switch (trigger_type) { case MPI3_DRIVER2_TRIGGER_TYPE_REPLY: mrioc->reply_trigger_present = true; break; case MPI3_DRIVER2_TRIGGER_TYPE_EVENT: mrioc->event_trigger_present = true; break; case MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE: mrioc->scsisense_trigger_present = true; break; default: break; } } spin_unlock_irqrestore(&mrioc->trigger_lock, flags); out: return retval; } /** * mpi3mr_release_diag_bufs - Release diag buffers * @mrioc: Adapter instance reference * @skip_rel_action: Skip release action and set buffer state * * This function calls helper function to release both trace and * firmware buffers from the controller. * * Return: None */ void mpi3mr_release_diag_bufs(struct mpi3mr_ioc *mrioc, u8 skip_rel_action) { u8 i; struct diag_buffer_desc *diag_buffer; for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) { diag_buffer = &mrioc->diag_buffers[i]; if (!(diag_buffer->addr)) continue; if (diag_buffer->status == MPI3MR_HDB_BUFSTATUS_RELEASED) continue; if (!skip_rel_action) mpi3mr_issue_diag_buf_release(mrioc, diag_buffer); diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED; atomic64_inc(&event_counter); } } /** * mpi3mr_set_trigger_data_in_hdb - Updates HDB trigger type and * trigger data * * @hdb: HDB pointer * @type: Trigger type * @data: Trigger data * @force: Trigger overwrite flag * @trigger_data: Pointer to trigger data information * * Updates trigger type and trigger data based on parameter * passed to this function * * Return: Nothing */ void mpi3mr_set_trigger_data_in_hdb(struct diag_buffer_desc *hdb, u8 type, union mpi3mr_trigger_data *trigger_data, bool force) { if ((!force) && (hdb->trigger_type != MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN)) return; hdb->trigger_type = type; if (!trigger_data) memset(&hdb->trigger_data, 0, sizeof(*trigger_data)); else memcpy(&hdb->trigger_data, trigger_data, sizeof(*trigger_data)); } /** * mpi3mr_set_trigger_data_in_all_hdb - Updates HDB trigger type * and trigger data for all HDB * * @mrioc: Adapter instance reference * @type: Trigger type * @data: Trigger data * @force: Trigger overwrite flag * @trigger_data: Pointer to trigger data information * * Updates trigger type and trigger data based on parameter * passed to this function * * Return: Nothing */ void mpi3mr_set_trigger_data_in_all_hdb(struct mpi3mr_ioc *mrioc, u8 type, union mpi3mr_trigger_data *trigger_data, bool force) { struct diag_buffer_desc *hdb = NULL; hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_TRACE); if (hdb) mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force); hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW); if (hdb) mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force); } /** * mpi3mr_hdbstatuschg_evt_th - HDB status change evt tophalf * @mrioc: Adapter instance reference * @event_reply: event data * * Modifies the status of the applicable diag buffer descriptors * * Return: Nothing */ void mpi3mr_hdbstatuschg_evt_th(struct mpi3mr_ioc *mrioc, struct mpi3_event_notification_reply *event_reply) { struct mpi3_event_data_diag_buffer_status_change *evtdata; struct diag_buffer_desc *diag_buffer; evtdata = (struct mpi3_event_data_diag_buffer_status_change *) event_reply->event_data; diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, evtdata->type); if (!diag_buffer) return; if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) && (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED)) return; switch (evtdata->reason_code) { case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RELEASED: { diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED; mpi3mr_set_trigger_data_in_hdb(diag_buffer, MPI3MR_HDB_TRIGGER_TYPE_FW_RELEASED, NULL, 0); atomic64_inc(&event_counter); break; } case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RESUMED: { diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED; break; } case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_PAUSED: { diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED; break; } default: dprint_event_th(mrioc, "%s: unknown reason_code(%d)\n", __func__, evtdata->reason_code); break; } } /** * mpi3mr_diag_buffer_for_type - returns buffer desc for type * @mrioc: Adapter instance reference * @buf_type: Diagnostic buffer type * * Identifies matching diag descriptor from mrioc for given diag * buffer type. * * Return: diag buffer descriptor on success, NULL on failures. */ struct diag_buffer_desc * mpi3mr_diag_buffer_for_type(struct mpi3mr_ioc *mrioc, u8 buf_type) { u8 i; for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) { if (mrioc->diag_buffers[i].type == buf_type) return &mrioc->diag_buffers[i]; } return NULL; } /** * mpi3mr_bsg_pel_abort - sends PEL abort request * @mrioc: Adapter instance reference * * This function sends PEL abort request to the firmware through * admin request queue. * * Return: 0 on success, -1 on failure */ static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc) { struct mpi3_pel_req_action_abort pel_abort_req; struct mpi3_pel_reply *pel_reply; int retval = 0; u16 pe_log_status; if (mrioc->reset_in_progress) { dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__); return -1; } if (mrioc->stop_bsgs || mrioc->block_on_pci_err) { dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__); return -1; } memset(&pel_abort_req, 0, sizeof(pel_abort_req)); mutex_lock(&mrioc->pel_abort_cmd.mutex); if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) { dprint_bsg_err(mrioc, "%s: command is in use\n", __func__); mutex_unlock(&mrioc->pel_abort_cmd.mutex); return -1; } mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING; mrioc->pel_abort_cmd.is_waiting = 1; mrioc->pel_abort_cmd.callback = NULL; pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT); pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG; pel_abort_req.action = MPI3_PEL_ACTION_ABORT; pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT); mrioc->pel_abort_requested = 1; init_completion(&mrioc->pel_abort_cmd.done); retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req, sizeof(pel_abort_req), 0); if (retval) { retval = -1; dprint_bsg_err(mrioc, "%s: admin request post failed\n", __func__); mrioc->pel_abort_requested = 0; goto out_unlock; } wait_for_completion_timeout(&mrioc->pel_abort_cmd.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) { mrioc->pel_abort_cmd.is_waiting = 0; dprint_bsg_err(mrioc, "%s: command timedout\n", __func__); if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET)) mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1); retval = -1; goto out_unlock; } if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { dprint_bsg_err(mrioc, "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n", __func__, (mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->pel_abort_cmd.ioc_loginfo); retval = -1; goto out_unlock; } if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) { pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply; pe_log_status = le16_to_cpu(pel_reply->pe_log_status); if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) { dprint_bsg_err(mrioc, "%s: command failed, pel_status(0x%04x)\n", __func__, pe_log_status); retval = -1; } } out_unlock: mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->pel_abort_cmd.mutex); return retval; } /** * mpi3mr_bsg_verify_adapter - verify adapter number is valid * @ioc_number: Adapter number * * This function returns the adapter instance pointer of given * adapter number. If adapter number does not match with the * driver's adapter list, driver returns NULL. * * Return: adapter instance reference */ static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number) { struct mpi3mr_ioc *mrioc = NULL; spin_lock(&mrioc_list_lock); list_for_each_entry(mrioc, &mrioc_list, list) { if (mrioc->id == ioc_number) { spin_unlock(&mrioc_list_lock); return mrioc; } } spin_unlock(&mrioc_list_lock); return NULL; } /** * mpi3mr_bsg_refresh_hdb_triggers - Refresh HDB trigger data * @mrioc: Adapter instance reference * @job: BSG Job pointer * * This function reads the controller trigger config page as * defined by the input page type and refreshes the driver's * local trigger information structures with the controller's * config page data. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_refresh_hdb_triggers(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { struct mpi3mr_bsg_out_refresh_hdb_triggers refresh_triggers; uint32_t data_out_sz; u8 page_action; long rval = -EINVAL; data_out_sz = job->request_payload.payload_len; if (data_out_sz != sizeof(refresh_triggers)) { dprint_bsg_err(mrioc, "%s: invalid size argument\n", __func__); return rval; } if (mrioc->unrecoverable) { dprint_bsg_err(mrioc, "%s: unrecoverable controller\n", __func__); return -EFAULT; } if (mrioc->reset_in_progress) { dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__); return -EAGAIN; } sg_copy_to_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &refresh_triggers, sizeof(refresh_triggers)); switch (refresh_triggers.page_type) { case MPI3MR_HDB_REFRESH_TYPE_CURRENT: page_action = MPI3_CONFIG_ACTION_READ_CURRENT; break; case MPI3MR_HDB_REFRESH_TYPE_DEFAULT: page_action = MPI3_CONFIG_ACTION_READ_DEFAULT; break; case MPI3MR_HDB_HDB_REFRESH_TYPE_PERSISTENT: page_action = MPI3_CONFIG_ACTION_READ_PERSISTENT; break; default: dprint_bsg_err(mrioc, "%s: unsupported refresh trigger, page_type %d\n", __func__, refresh_triggers.page_type); return rval; } rval = mpi3mr_refresh_trigger(mrioc, page_action); return rval; } /** * mpi3mr_bsg_upload_hdb - Upload a specific HDB to user space * @mrioc: Adapter instance reference * @job: BSG Job pointer * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_upload_hdb(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { struct mpi3mr_bsg_out_upload_hdb upload_hdb; struct diag_buffer_desc *diag_buffer; uint32_t data_out_size; uint32_t data_in_size; data_out_size = job->request_payload.payload_len; data_in_size = job->reply_payload.payload_len; if (data_out_size != sizeof(upload_hdb)) { dprint_bsg_err(mrioc, "%s: invalid size argument\n", __func__); return -EINVAL; } sg_copy_to_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &upload_hdb, sizeof(upload_hdb)); if ((!upload_hdb.length) || (data_in_size != upload_hdb.length)) { dprint_bsg_err(mrioc, "%s: invalid length argument\n", __func__); return -EINVAL; } diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, upload_hdb.buf_type); if ((!diag_buffer) || (!diag_buffer->addr)) { dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n", __func__, upload_hdb.buf_type); return -EINVAL; } if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) && (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED)) { dprint_bsg_err(mrioc, "%s: invalid buffer status %d for type %d\n", __func__, diag_buffer->status, upload_hdb.buf_type); return -EINVAL; } if ((upload_hdb.start_offset + upload_hdb.length) > diag_buffer->size) { dprint_bsg_err(mrioc, "%s: invalid start offset %d, length %d for type %d\n", __func__, upload_hdb.start_offset, upload_hdb.length, upload_hdb.buf_type); return -EINVAL; } sg_copy_from_buffer(job->reply_payload.sg_list, job->reply_payload.sg_cnt, (diag_buffer->addr + upload_hdb.start_offset), data_in_size); return 0; } /** * mpi3mr_bsg_repost_hdb - Re-post HDB * @mrioc: Adapter instance reference * @job: BSG job pointer * * This function retrieves the HDB descriptor corresponding to a * given buffer type and if the HDB is in released status then * posts the HDB with the firmware. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_repost_hdb(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { struct mpi3mr_bsg_out_repost_hdb repost_hdb; struct diag_buffer_desc *diag_buffer; uint32_t data_out_sz; data_out_sz = job->request_payload.payload_len; if (data_out_sz != sizeof(repost_hdb)) { dprint_bsg_err(mrioc, "%s: invalid size argument\n", __func__); return -EINVAL; } if (mrioc->unrecoverable) { dprint_bsg_err(mrioc, "%s: unrecoverable controller\n", __func__); return -EFAULT; } if (mrioc->reset_in_progress) { dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__); return -EAGAIN; } sg_copy_to_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &repost_hdb, sizeof(repost_hdb)); diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, repost_hdb.buf_type); if ((!diag_buffer) || (!diag_buffer->addr)) { dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n", __func__, repost_hdb.buf_type); return -EINVAL; } if (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) { dprint_bsg_err(mrioc, "%s: invalid buffer status %d for type %d\n", __func__, diag_buffer->status, repost_hdb.buf_type); return -EINVAL; } if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer)) { dprint_bsg_err(mrioc, "%s: post failed for type %d\n", __func__, repost_hdb.buf_type); return -EFAULT; } mpi3mr_set_trigger_data_in_hdb(diag_buffer, MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1); return 0; } /** * mpi3mr_bsg_query_hdb - Handler for query HDB command * @mrioc: Adapter instance reference * @job: BSG job pointer * * This function prepares and copies the host diagnostic buffer * entries to the user buffer. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_query_hdb(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { long rval = 0; struct mpi3mr_bsg_in_hdb_status *hbd_status; struct mpi3mr_hdb_entry *hbd_status_entry; u32 length, min_length; u8 i; struct diag_buffer_desc *diag_buffer; uint32_t data_in_sz = 0; data_in_sz = job->request_payload.payload_len; length = (sizeof(*hbd_status) + ((MPI3MR_MAX_NUM_HDB - 1) * sizeof(*hbd_status_entry))); hbd_status = kmalloc(length, GFP_KERNEL); if (!hbd_status) return -ENOMEM; hbd_status_entry = &hbd_status->entry[0]; hbd_status->num_hdb_types = MPI3MR_MAX_NUM_HDB; for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) { diag_buffer = &mrioc->diag_buffers[i]; hbd_status_entry->buf_type = diag_buffer->type; hbd_status_entry->status = diag_buffer->status; hbd_status_entry->trigger_type = diag_buffer->trigger_type; memcpy(&hbd_status_entry->trigger_data, &diag_buffer->trigger_data, sizeof(hbd_status_entry->trigger_data)); hbd_status_entry->size = (diag_buffer->size / 1024); hbd_status_entry++; } hbd_status->element_trigger_format = MPI3MR_HDB_QUERY_ELEMENT_TRIGGER_FORMAT_DATA; if (data_in_sz < 4) { dprint_bsg_err(mrioc, "%s: invalid size passed\n", __func__); rval = -EINVAL; goto out; } min_length = min(data_in_sz, length); if (job->request_payload.payload_len >= min_length) { sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, hbd_status, min_length); rval = 0; } out: kfree(hbd_status); return rval; } /** * mpi3mr_enable_logdata - Handler for log data enable * @mrioc: Adapter instance reference * @job: BSG job reference * * This function enables log data caching in the driver if not * already enabled and return the maximum number of log data * entries that can be cached in the driver. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { struct mpi3mr_logdata_enable logdata_enable; if (!mrioc->logdata_buf) { mrioc->logdata_entry_sz = (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4)) + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ; mrioc->logdata_buf_idx = 0; mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES, mrioc->logdata_entry_sz, GFP_KERNEL); if (!mrioc->logdata_buf) return -ENOMEM; } memset(&logdata_enable, 0, sizeof(logdata_enable)); logdata_enable.max_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES; if (job->request_payload.payload_len >= sizeof(logdata_enable)) { sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &logdata_enable, sizeof(logdata_enable)); return 0; } return -EINVAL; } /** * mpi3mr_get_logdata - Handler for get log data * @mrioc: Adapter instance reference * @job: BSG job pointer * This function copies the log data entries to the user buffer * when log caching is enabled in the driver. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz; if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz)) return -EINVAL; num_entries = job->request_payload.payload_len / entry_sz; if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES) num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES; sz = num_entries * entry_sz; if (job->request_payload.payload_len >= sz) { sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, mrioc->logdata_buf, sz); return 0; } return -EINVAL; } /** * mpi3mr_bsg_pel_enable - Handler for PEL enable driver * @mrioc: Adapter instance reference * @job: BSG job pointer * * This function is the handler for PEL enable driver. * Validates the application given class and locale and if * requires aborts the existing PEL wait request and/or issues * new PEL wait request to the firmware and returns. * * Return: 0 on success and proper error codes on failure. */ static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { long rval = -EINVAL; struct mpi3mr_bsg_out_pel_enable pel_enable; u8 issue_pel_wait; u8 tmp_class; u16 tmp_locale; if (job->request_payload.payload_len != sizeof(pel_enable)) { dprint_bsg_err(mrioc, "%s: invalid size argument\n", __func__); return rval; } if (mrioc->unrecoverable) { dprint_bsg_err(mrioc, "%s: unrecoverable controller\n", __func__); return -EFAULT; } if (mrioc->reset_in_progress) { dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__); return -EAGAIN; } if (mrioc->stop_bsgs) { dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__); return -EAGAIN; } sg_copy_to_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &pel_enable, sizeof(pel_enable)); if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) { dprint_bsg_err(mrioc, "%s: out of range class %d sent\n", __func__, pel_enable.pel_class); rval = 0; goto out; } if (!mrioc->pel_enabled) issue_pel_wait = 1; else { if ((mrioc->pel_class <= pel_enable.pel_class) && !((mrioc->pel_locale & pel_enable.pel_locale) ^ pel_enable.pel_locale)) { issue_pel_wait = 0; rval = 0; } else { pel_enable.pel_locale |= mrioc->pel_locale; if (mrioc->pel_class < pel_enable.pel_class) pel_enable.pel_class = mrioc->pel_class; rval = mpi3mr_bsg_pel_abort(mrioc); if (rval) { dprint_bsg_err(mrioc, "%s: pel_abort failed, status(%ld)\n", __func__, rval); goto out; } issue_pel_wait = 1; } } if (issue_pel_wait) { tmp_class = mrioc->pel_class; tmp_locale = mrioc->pel_locale; mrioc->pel_class = pel_enable.pel_class; mrioc->pel_locale = pel_enable.pel_locale; mrioc->pel_enabled = 1; rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL); if (rval) { mrioc->pel_class = tmp_class; mrioc->pel_locale = tmp_locale; mrioc->pel_enabled = 0; dprint_bsg_err(mrioc, "%s: pel get sequence number failed, status(%ld)\n", __func__, rval); } } out: return rval; } /** * mpi3mr_get_all_tgt_info - Get all target information * @mrioc: Adapter instance reference * @job: BSG job reference * * This function copies the driver managed target devices device * handle, persistent ID, bus ID and taret ID to the user * provided buffer for the specific controller. This function * also provides the number of devices managed by the driver for * the specific controller. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { u16 num_devices = 0, i = 0, size; unsigned long flags; struct mpi3mr_tgt_dev *tgtdev; struct mpi3mr_device_map_info *devmap_info = NULL; struct mpi3mr_all_tgt_info *alltgt_info = NULL; uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0; if (job->request_payload.payload_len < sizeof(u32)) { dprint_bsg_err(mrioc, "%s: invalid size argument\n", __func__); return -EINVAL; } spin_lock_irqsave(&mrioc->tgtdev_lock, flags); list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) num_devices++; spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags); if ((job->request_payload.payload_len <= sizeof(u64)) || list_empty(&mrioc->tgtdev_list)) { sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &num_devices, sizeof(num_devices)); return 0; } kern_entrylen = num_devices * sizeof(*devmap_info); size = sizeof(u64) + kern_entrylen; alltgt_info = kzalloc(size, GFP_KERNEL); if (!alltgt_info) return -ENOMEM; devmap_info = alltgt_info->dmi; memset((u8 *)devmap_info, 0xFF, kern_entrylen); spin_lock_irqsave(&mrioc->tgtdev_lock, flags); list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) { if (i < num_devices) { devmap_info[i].handle = tgtdev->dev_handle; devmap_info[i].perst_id = tgtdev->perst_id; if (tgtdev->host_exposed && tgtdev->starget) { devmap_info[i].target_id = tgtdev->starget->id; devmap_info[i].bus_id = tgtdev->starget->channel; } i++; } } num_devices = i; spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags); alltgt_info->num_devices = num_devices; usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) / sizeof(*devmap_info); usr_entrylen *= sizeof(*devmap_info); min_entrylen = min(usr_entrylen, kern_entrylen); sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, alltgt_info, (min_entrylen + sizeof(u64))); kfree(alltgt_info); return 0; } /** * mpi3mr_get_change_count - Get topology change count * @mrioc: Adapter instance reference * @job: BSG job reference * * This function copies the toplogy change count provided by the * driver in events and cached in the driver to the user * provided buffer for the specific controller. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { struct mpi3mr_change_count chgcnt; memset(&chgcnt, 0, sizeof(chgcnt)); chgcnt.change_count = mrioc->change_count; if (job->request_payload.payload_len >= sizeof(chgcnt)) { sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &chgcnt, sizeof(chgcnt)); return 0; } return -EINVAL; } /** * mpi3mr_bsg_adp_reset - Issue controller reset * @mrioc: Adapter instance reference * @job: BSG job reference * * This function identifies the user provided reset type and * issues approporiate reset to the controller and wait for that * to complete and reinitialize the controller and then returns * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { long rval = -EINVAL; u8 save_snapdump; struct mpi3mr_bsg_adp_reset adpreset; if (job->request_payload.payload_len != sizeof(adpreset)) { dprint_bsg_err(mrioc, "%s: invalid size argument\n", __func__); goto out; } if (mrioc->unrecoverable || mrioc->block_on_pci_err) return -EINVAL; sg_copy_to_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &adpreset, sizeof(adpreset)); switch (adpreset.reset_type) { case MPI3MR_BSG_ADPRESET_SOFT: save_snapdump = 0; break; case MPI3MR_BSG_ADPRESET_DIAG_FAULT: save_snapdump = 1; break; default: dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n", __func__, adpreset.reset_type); goto out; } rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP, save_snapdump); if (rval) dprint_bsg_err(mrioc, "%s: reset handler returned error(%ld) for reset type %d\n", __func__, rval, adpreset.reset_type); out: return rval; } /** * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler * @mrioc: Adapter instance reference * @job: BSG job reference * * This function provides adapter information for the given * controller * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc, struct bsg_job *job) { enum mpi3mr_iocstate ioc_state; struct mpi3mr_bsg_in_adpinfo adpinfo; memset(&adpinfo, 0, sizeof(adpinfo)); adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY; adpinfo.pci_dev_id = mrioc->pdev->device; adpinfo.pci_dev_hw_rev = mrioc->pdev->revision; adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device; adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor; adpinfo.pci_bus = mrioc->pdev->bus->number; adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn); adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn); adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus); adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION; ioc_state = mpi3mr_get_iocstate(mrioc); if (ioc_state == MRIOC_STATE_UNRECOVERABLE) adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE; else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs)) adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET; else if (ioc_state == MRIOC_STATE_FAULT) adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT; else adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL; memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info, sizeof(adpinfo.driver_info)); if (job->request_payload.payload_len >= sizeof(adpinfo)) { sg_copy_from_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, &adpinfo, sizeof(adpinfo)); return 0; } return -EINVAL; } /** * mpi3mr_bsg_process_drv_cmds - Driver Command handler * @job: BSG job reference * * This function is the top level handler for driver commands, * this does basic validation of the buffer and identifies the * opcode and switches to correct sub handler. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job) { long rval = -EINVAL; struct mpi3mr_ioc *mrioc = NULL; struct mpi3mr_bsg_packet *bsg_req = NULL; struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL; bsg_req = job->request; drvrcmd = &bsg_req->cmd.drvrcmd; mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id); if (!mrioc) return -ENODEV; if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) { rval = mpi3mr_bsg_populate_adpinfo(mrioc, job); return rval; } if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) return -ERESTARTSYS; switch (drvrcmd->opcode) { case MPI3MR_DRVBSG_OPCODE_ADPRESET: rval = mpi3mr_bsg_adp_reset(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO: rval = mpi3mr_get_all_tgt_info(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_GETCHGCNT: rval = mpi3mr_get_change_count(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE: rval = mpi3mr_enable_logdata(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_GETLOGDATA: rval = mpi3mr_get_logdata(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_PELENABLE: rval = mpi3mr_bsg_pel_enable(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_QUERY_HDB: rval = mpi3mr_bsg_query_hdb(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_REPOST_HDB: rval = mpi3mr_bsg_repost_hdb(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_UPLOAD_HDB: rval = mpi3mr_bsg_upload_hdb(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_REFRESH_HDB_TRIGGERS: rval = mpi3mr_bsg_refresh_hdb_triggers(mrioc, job); break; case MPI3MR_DRVBSG_OPCODE_UNKNOWN: default: pr_err("%s: unsupported driver command opcode %d\n", MPI3MR_DRIVER_NAME, drvrcmd->opcode); break; } mutex_unlock(&mrioc->bsg_cmds.mutex); return rval; } /** * mpi3mr_total_num_ioctl_sges - Count number of SGEs required * @drv_bufs: DMA address of the buffers to be placed in sgl * @bufcnt: Number of DMA buffers * * This function returns total number of data SGEs required * including zero length SGEs and excluding management request * and response buffer for the given list of data buffer * descriptors * * Return: Number of SGE elements needed */ static inline u16 mpi3mr_total_num_ioctl_sges(struct mpi3mr_buf_map *drv_bufs, u8 bufcnt) { u16 i, sge_count = 0; for (i = 0; i < bufcnt; i++, drv_bufs++) { if (drv_bufs->data_dir == DMA_NONE || drv_bufs->kern_buf) continue; sge_count += drv_bufs->num_dma_desc; if (!drv_bufs->num_dma_desc) sge_count++; } return sge_count; } /** * mpi3mr_bsg_build_sgl - SGL construction for MPI commands * @mrioc: Adapter instance reference * @mpi_req: MPI request * @sgl_offset: offset to start sgl in the MPI request * @drv_bufs: DMA address of the buffers to be placed in sgl * @bufcnt: Number of DMA buffers * @is_rmc: Does the buffer list has management command buffer * @is_rmr: Does the buffer list has management response buffer * @num_datasges: Number of data buffers in the list * * This function places the DMA address of the given buffers in * proper format as SGEs in the given MPI request. * * Return: 0 on success,-1 on failure */ static int mpi3mr_bsg_build_sgl(struct mpi3mr_ioc *mrioc, u8 *mpi_req, u32 sgl_offset, struct mpi3mr_buf_map *drv_bufs, u8 bufcnt, u8 is_rmc, u8 is_rmr, u8 num_datasges) { struct mpi3_request_header *mpi_header = (struct mpi3_request_header *)mpi_req; u8 *sgl = (mpi_req + sgl_offset), count = 0; struct mpi3_mgmt_passthrough_request *rmgmt_req = (struct mpi3_mgmt_passthrough_request *)mpi_req; struct mpi3mr_buf_map *drv_buf_iter = drv_bufs; u8 flag, sgl_flags, sgl_flag_eob, sgl_flags_last, last_chain_sgl_flag; u16 available_sges, i, sges_needed; u32 sge_element_size = sizeof(struct mpi3_sge_common); bool chain_used = false; sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE | MPI3_SGE_FLAGS_DLAS_SYSTEM; sgl_flag_eob = sgl_flags | MPI3_SGE_FLAGS_END_OF_BUFFER; sgl_flags_last = sgl_flag_eob | MPI3_SGE_FLAGS_END_OF_LIST; last_chain_sgl_flag = MPI3_SGE_FLAGS_ELEMENT_TYPE_LAST_CHAIN | MPI3_SGE_FLAGS_DLAS_SYSTEM; sges_needed = mpi3mr_total_num_ioctl_sges(drv_bufs, bufcnt); if (is_rmc) { mpi3mr_add_sg_single(&rmgmt_req->command_sgl, sgl_flags_last, drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma); sgl = (u8 *)drv_buf_iter->kern_buf + drv_buf_iter->bsg_buf_len; available_sges = (drv_buf_iter->kern_buf_len - drv_buf_iter->bsg_buf_len) / sge_element_size; if (sges_needed > available_sges) return -1; chain_used = true; drv_buf_iter++; count++; if (is_rmr) { mpi3mr_add_sg_single(&rmgmt_req->response_sgl, sgl_flags_last, drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma); drv_buf_iter++; count++; } else mpi3mr_build_zero_len_sge( &rmgmt_req->response_sgl); if (num_datasges) { i = 0; goto build_sges; } } else { if (sgl_offset >= MPI3MR_ADMIN_REQ_FRAME_SZ) return -1; available_sges = (MPI3MR_ADMIN_REQ_FRAME_SZ - sgl_offset) / sge_element_size; if (!available_sges) return -1; } if (!num_datasges) { mpi3mr_build_zero_len_sge(sgl); return 0; } if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) { if ((sges_needed > 2) || (sges_needed > available_sges)) return -1; for (; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->data_dir == DMA_NONE || !drv_buf_iter->num_dma_desc) continue; mpi3mr_add_sg_single(sgl, sgl_flags_last, drv_buf_iter->dma_desc[0].size, drv_buf_iter->dma_desc[0].dma_addr); sgl += sge_element_size; } return 0; } i = 0; build_sges: for (; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->data_dir == DMA_NONE) continue; if (!drv_buf_iter->num_dma_desc) { if (chain_used && !available_sges) return -1; if (!chain_used && (available_sges == 1) && (sges_needed > 1)) goto setup_chain; flag = sgl_flag_eob; if (num_datasges == 1) flag = sgl_flags_last; mpi3mr_add_sg_single(sgl, flag, 0, 0); sgl += sge_element_size; sges_needed--; available_sges--; num_datasges--; continue; } for (; i < drv_buf_iter->num_dma_desc; i++) { if (chain_used && !available_sges) return -1; if (!chain_used && (available_sges == 1) && (sges_needed > 1)) goto setup_chain; flag = sgl_flags; if (i == (drv_buf_iter->num_dma_desc - 1)) { if (num_datasges == 1) flag = sgl_flags_last; else flag = sgl_flag_eob; } mpi3mr_add_sg_single(sgl, flag, drv_buf_iter->dma_desc[i].size, drv_buf_iter->dma_desc[i].dma_addr); sgl += sge_element_size; available_sges--; sges_needed--; } num_datasges--; i = 0; } return 0; setup_chain: available_sges = mrioc->ioctl_chain_sge.size / sge_element_size; if (sges_needed > available_sges) return -1; mpi3mr_add_sg_single(sgl, last_chain_sgl_flag, (sges_needed * sge_element_size), mrioc->ioctl_chain_sge.dma_addr); memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size); sgl = (u8 *)mrioc->ioctl_chain_sge.addr; chain_used = true; goto build_sges; } /** * mpi3mr_get_nvme_data_fmt - returns the NVMe data format * @nvme_encap_request: NVMe encapsulated MPI request * * This function returns the type of the data format specified * in user provided NVMe command in NVMe encapsulated request. * * Return: Data format of the NVMe command (PRP/SGL etc) */ static unsigned int mpi3mr_get_nvme_data_fmt( struct mpi3_nvme_encapsulated_request *nvme_encap_request) { u8 format = 0; format = ((nvme_encap_request->command[0] & 0xc000) >> 14); return format; } /** * mpi3mr_build_nvme_sgl - SGL constructor for NVME * encapsulated request * @mrioc: Adapter instance reference * @nvme_encap_request: NVMe encapsulated MPI request * @drv_bufs: DMA address of the buffers to be placed in sgl * @bufcnt: Number of DMA buffers * * This function places the DMA address of the given buffers in * proper format as SGEs in the given NVMe encapsulated request. * * Return: 0 on success, -1 on failure */ static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc, struct mpi3_nvme_encapsulated_request *nvme_encap_request, struct mpi3mr_buf_map *drv_bufs, u8 bufcnt) { struct mpi3mr_nvme_pt_sge *nvme_sgl; __le64 sgl_dma; u8 count; size_t length = 0; u16 available_sges = 0, i; u32 sge_element_size = sizeof(struct mpi3mr_nvme_pt_sge); struct mpi3mr_buf_map *drv_buf_iter = drv_bufs; u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) << mrioc->facts.sge_mod_shift) << 32); u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) << mrioc->facts.sge_mod_shift) << 32; u32 size; nvme_sgl = (struct mpi3mr_nvme_pt_sge *) ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET); /* * Not all commands require a data transfer. If no data, just return * without constructing any sgl. */ for (count = 0; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->data_dir == DMA_NONE) continue; length = drv_buf_iter->kern_buf_len; break; } if (!length || !drv_buf_iter->num_dma_desc) return 0; if (drv_buf_iter->num_dma_desc == 1) { available_sges = 1; goto build_sges; } sgl_dma = cpu_to_le64(mrioc->ioctl_chain_sge.dma_addr); if (sgl_dma & sgemod_mask) { dprint_bsg_err(mrioc, "%s: SGL chain address collides with SGE modifier\n", __func__); return -1; } sgl_dma &= ~sgemod_mask; sgl_dma |= sgemod_val; memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size); available_sges = mrioc->ioctl_chain_sge.size / sge_element_size; if (available_sges < drv_buf_iter->num_dma_desc) return -1; memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge)); nvme_sgl->base_addr = sgl_dma; size = drv_buf_iter->num_dma_desc * sizeof(struct mpi3mr_nvme_pt_sge); nvme_sgl->length = cpu_to_le32(size); nvme_sgl->type = MPI3MR_NVMESGL_LAST_SEGMENT; nvme_sgl = (struct mpi3mr_nvme_pt_sge *)mrioc->ioctl_chain_sge.addr; build_sges: for (i = 0; i < drv_buf_iter->num_dma_desc; i++) { sgl_dma = cpu_to_le64(drv_buf_iter->dma_desc[i].dma_addr); if (sgl_dma & sgemod_mask) { dprint_bsg_err(mrioc, "%s: SGL address collides with SGE modifier\n", __func__); return -1; } sgl_dma &= ~sgemod_mask; sgl_dma |= sgemod_val; nvme_sgl->base_addr = sgl_dma; nvme_sgl->length = cpu_to_le32(drv_buf_iter->dma_desc[i].size); nvme_sgl->type = MPI3MR_NVMESGL_DATA_SEGMENT; nvme_sgl++; available_sges--; } return 0; } /** * mpi3mr_build_nvme_prp - PRP constructor for NVME * encapsulated request * @mrioc: Adapter instance reference * @nvme_encap_request: NVMe encapsulated MPI request * @drv_bufs: DMA address of the buffers to be placed in SGL * @bufcnt: Number of DMA buffers * * This function places the DMA address of the given buffers in * proper format as PRP entries in the given NVMe encapsulated * request. * * Return: 0 on success, -1 on failure */ static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc, struct mpi3_nvme_encapsulated_request *nvme_encap_request, struct mpi3mr_buf_map *drv_bufs, u8 bufcnt) { int prp_size = MPI3MR_NVME_PRP_SIZE; __le64 *prp_entry, *prp1_entry, *prp2_entry; __le64 *prp_page; dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; u32 offset, entry_len, dev_pgsz; u32 page_mask_result, page_mask; size_t length = 0, desc_len; u8 count; struct mpi3mr_buf_map *drv_buf_iter = drv_bufs; u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) << mrioc->facts.sge_mod_shift) << 32); u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) << mrioc->facts.sge_mod_shift) << 32; u16 dev_handle = nvme_encap_request->dev_handle; struct mpi3mr_tgt_dev *tgtdev; u16 desc_count = 0; tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle); if (!tgtdev) { dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n", __func__, dev_handle); return -1; } if (tgtdev->dev_spec.pcie_inf.pgsz == 0) { dprint_bsg_err(mrioc, "%s: NVMe device page size is zero for handle 0x%04x\n", __func__, dev_handle); mpi3mr_tgtdev_put(tgtdev); return -1; } dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz); mpi3mr_tgtdev_put(tgtdev); page_mask = dev_pgsz - 1; if (dev_pgsz > MPI3MR_IOCTL_SGE_SIZE) { dprint_bsg_err(mrioc, "%s: NVMe device page size(%d) is greater than ioctl data sge size(%d) for handle 0x%04x\n", __func__, dev_pgsz, MPI3MR_IOCTL_SGE_SIZE, dev_handle); return -1; } if (MPI3MR_IOCTL_SGE_SIZE % dev_pgsz) { dprint_bsg_err(mrioc, "%s: ioctl data sge size(%d) is not a multiple of NVMe device page size(%d) for handle 0x%04x\n", __func__, MPI3MR_IOCTL_SGE_SIZE, dev_pgsz, dev_handle); return -1; } /* * Not all commands require a data transfer. If no data, just return * without constructing any PRP. */ for (count = 0; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->data_dir == DMA_NONE) continue; length = drv_buf_iter->kern_buf_len; break; } if (!length || !drv_buf_iter->num_dma_desc) return 0; for (count = 0; count < drv_buf_iter->num_dma_desc; count++) { dma_addr = drv_buf_iter->dma_desc[count].dma_addr; if (dma_addr & page_mask) { dprint_bsg_err(mrioc, "%s:dma_addr %pad is not aligned with page size 0x%x\n", __func__, &dma_addr, dev_pgsz); return -1; } } dma_addr = drv_buf_iter->dma_desc[0].dma_addr; desc_len = drv_buf_iter->dma_desc[0].size; mrioc->prp_sz = 0; mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev, dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL); if (!mrioc->prp_list_virt) return -1; mrioc->prp_sz = dev_pgsz; /* * Set pointers to PRP1 and PRP2, which are in the NVMe command. * PRP1 is located at a 24 byte offset from the start of the NVMe * command. Then set the current PRP entry pointer to PRP1. */ prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_PRP1_OFFSET); prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_PRP2_OFFSET); prp_entry = prp1_entry; /* * For the PRP entries, use the specially allocated buffer of * contiguous memory. */ prp_page = (__le64 *)mrioc->prp_list_virt; prp_page_dma = mrioc->prp_list_dma; /* * Check if we are within 1 entry of a page boundary we don't * want our first entry to be a PRP List entry. */ page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; if (!page_mask_result) { dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n", __func__); goto err_out; } /* * Set PRP physical pointer, which initially points to the current PRP * DMA memory page. */ prp_entry_dma = prp_page_dma; /* Loop while the length is not zero. */ while (length) { page_mask_result = (prp_entry_dma + prp_size) & page_mask; if (!page_mask_result && (length > dev_pgsz)) { dprint_bsg_err(mrioc, "%s: single PRP page is not sufficient\n", __func__); goto err_out; } /* Need to handle if entry will be part of a page. */ offset = dma_addr & page_mask; entry_len = dev_pgsz - offset; if (prp_entry == prp1_entry) { /* * Must fill in the first PRP pointer (PRP1) before * moving on. */ *prp1_entry = cpu_to_le64(dma_addr); if (*prp1_entry & sgemod_mask) { dprint_bsg_err(mrioc, "%s: PRP1 address collides with SGE modifier\n", __func__); goto err_out; } *prp1_entry &= ~sgemod_mask; *prp1_entry |= sgemod_val; /* * Now point to the second PRP entry within the * command (PRP2). */ prp_entry = prp2_entry; } else if (prp_entry == prp2_entry) { /* * Should the PRP2 entry be a PRP List pointer or just * a regular PRP pointer? If there is more than one * more page of data, must use a PRP List pointer. */ if (length > dev_pgsz) { /* * PRP2 will contain a PRP List pointer because * more PRP's are needed with this command. The * list will start at the beginning of the * contiguous buffer. */ *prp2_entry = cpu_to_le64(prp_entry_dma); if (*prp2_entry & sgemod_mask) { dprint_bsg_err(mrioc, "%s: PRP list address collides with SGE modifier\n", __func__); goto err_out; } *prp2_entry &= ~sgemod_mask; *prp2_entry |= sgemod_val; /* * The next PRP Entry will be the start of the * first PRP List. */ prp_entry = prp_page; continue; } else { /* * After this, the PRP Entries are complete. * This command uses 2 PRP's and no PRP list. */ *prp2_entry = cpu_to_le64(dma_addr); if (*prp2_entry & sgemod_mask) { dprint_bsg_err(mrioc, "%s: PRP2 collides with SGE modifier\n", __func__); goto err_out; } *prp2_entry &= ~sgemod_mask; *prp2_entry |= sgemod_val; } } else { /* * Put entry in list and bump the addresses. * * After PRP1 and PRP2 are filled in, this will fill in * all remaining PRP entries in a PRP List, one per * each time through the loop. */ *prp_entry = cpu_to_le64(dma_addr); if (*prp_entry & sgemod_mask) { dprint_bsg_err(mrioc, "%s: PRP address collides with SGE modifier\n", __func__); goto err_out; } *prp_entry &= ~sgemod_mask; *prp_entry |= sgemod_val; prp_entry++; prp_entry_dma += prp_size; } /* decrement length accounting for last partial page. */ if (entry_len >= length) { length = 0; } else { if (entry_len <= desc_len) { dma_addr += entry_len; desc_len -= entry_len; } if (!desc_len) { if ((++desc_count) >= drv_buf_iter->num_dma_desc) { dprint_bsg_err(mrioc, "%s: Invalid len %zd while building PRP\n", __func__, length); goto err_out; } dma_addr = drv_buf_iter->dma_desc[desc_count].dma_addr; desc_len = drv_buf_iter->dma_desc[desc_count].size; } length -= entry_len; } } return 0; err_out: if (mrioc->prp_list_virt) { dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz, mrioc->prp_list_virt, mrioc->prp_list_dma); mrioc->prp_list_virt = NULL; } return -1; } /** * mpi3mr_map_data_buffer_dma - build dma descriptors for data * buffers * @mrioc: Adapter instance reference * @drv_buf: buffer map descriptor * @desc_count: Number of already consumed dma descriptors * * This function computes how many pre-allocated DMA descriptors * are required for the given data buffer and if those number of * descriptors are free, then setup the mapping of the scattered * DMA address to the given data buffer, if the data direction * of the buffer is DMA_TO_DEVICE then the actual data is copied to * the DMA buffers * * Return: 0 on success, -1 on failure */ static int mpi3mr_map_data_buffer_dma(struct mpi3mr_ioc *mrioc, struct mpi3mr_buf_map *drv_buf, u16 desc_count) { u16 i, needed_desc = drv_buf->kern_buf_len / MPI3MR_IOCTL_SGE_SIZE; u32 buf_len = drv_buf->kern_buf_len, copied_len = 0; if (drv_buf->kern_buf_len % MPI3MR_IOCTL_SGE_SIZE) needed_desc++; if ((needed_desc + desc_count) > MPI3MR_NUM_IOCTL_SGE) { dprint_bsg_err(mrioc, "%s: DMA descriptor mapping error %d:%d:%d\n", __func__, needed_desc, desc_count, MPI3MR_NUM_IOCTL_SGE); return -1; } drv_buf->dma_desc = kzalloc(sizeof(*drv_buf->dma_desc) * needed_desc, GFP_KERNEL); if (!drv_buf->dma_desc) return -1; for (i = 0; i < needed_desc; i++, desc_count++) { drv_buf->dma_desc[i].addr = mrioc->ioctl_sge[desc_count].addr; drv_buf->dma_desc[i].dma_addr = mrioc->ioctl_sge[desc_count].dma_addr; if (buf_len < mrioc->ioctl_sge[desc_count].size) drv_buf->dma_desc[i].size = buf_len; else drv_buf->dma_desc[i].size = mrioc->ioctl_sge[desc_count].size; buf_len -= drv_buf->dma_desc[i].size; memset(drv_buf->dma_desc[i].addr, 0, mrioc->ioctl_sge[desc_count].size); if (drv_buf->data_dir == DMA_TO_DEVICE) { memcpy(drv_buf->dma_desc[i].addr, drv_buf->bsg_buf + copied_len, drv_buf->dma_desc[i].size); copied_len += drv_buf->dma_desc[i].size; } } drv_buf->num_dma_desc = needed_desc; return 0; } /** * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler * @job: BSG job reference * * This function is the top level handler for MPI Pass through * command, this does basic validation of the input data buffers, * identifies the given buffer types and MPI command, allocates * DMAable memory for user given buffers, construstcs SGL * properly and passes the command to the firmware. * * Once the MPI command is completed the driver copies the data * if any and reply, sense information to user provided buffers. * If the command is timed out then issues controller reset * prior to returning. * * Return: 0 on success and proper error codes on failure */ static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job) { long rval = -EINVAL; struct mpi3mr_ioc *mrioc = NULL; u8 *mpi_req = NULL, *sense_buff_k = NULL; u8 mpi_msg_size = 0; struct mpi3mr_bsg_packet *bsg_req = NULL; struct mpi3mr_bsg_mptcmd *karg; struct mpi3mr_buf_entry *buf_entries = NULL; struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL; u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0; u8 din_cnt = 0, dout_cnt = 0; u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF; u8 block_io = 0, nvme_fmt = 0, resp_code = 0; struct mpi3_request_header *mpi_header = NULL; struct mpi3_status_reply_descriptor *status_desc; struct mpi3_scsi_task_mgmt_request *tm_req; u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen; u16 dev_handle; struct mpi3mr_tgt_dev *tgtdev; struct mpi3mr_stgt_priv_data *stgt_priv = NULL; struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL; u32 din_size = 0, dout_size = 0; u8 *din_buf = NULL, *dout_buf = NULL; u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL; u16 rmc_size = 0, desc_count = 0; bsg_req = job->request; karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd; mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id); if (!mrioc) return -ENODEV; if (!mrioc->ioctl_sges_allocated) { dprint_bsg_err(mrioc, "%s: DMA memory was not allocated\n", __func__); return -ENOMEM; } if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT) karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT; mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL); if (!mpi_req) return -ENOMEM; mpi_header = (struct mpi3_request_header *)mpi_req; bufcnt = karg->buf_entry_list.num_of_entries; drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL); if (!drv_bufs) { rval = -ENOMEM; goto out; } dout_buf = kzalloc(job->request_payload.payload_len, GFP_KERNEL); if (!dout_buf) { rval = -ENOMEM; goto out; } din_buf = kzalloc(job->reply_payload.payload_len, GFP_KERNEL); if (!din_buf) { rval = -ENOMEM; goto out; } sg_copy_to_buffer(job->request_payload.sg_list, job->request_payload.sg_cnt, dout_buf, job->request_payload.payload_len); buf_entries = karg->buf_entry_list.buf_entry; sgl_din_iter = din_buf; sgl_dout_iter = dout_buf; drv_buf_iter = drv_bufs; for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) { switch (buf_entries->buf_type) { case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD: sgl_iter = sgl_dout_iter; sgl_dout_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_TO_DEVICE; is_rmcb = 1; if ((count != 0) || !buf_entries->buf_len) invalid_be = 1; break; case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP: sgl_iter = sgl_din_iter; sgl_din_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_FROM_DEVICE; is_rmrb = 1; if (count != 1 || !is_rmcb || !buf_entries->buf_len) invalid_be = 1; break; case MPI3MR_BSG_BUFTYPE_DATA_IN: sgl_iter = sgl_din_iter; sgl_din_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_FROM_DEVICE; din_cnt++; din_size += buf_entries->buf_len; if ((din_cnt > 1) && !is_rmcb) invalid_be = 1; break; case MPI3MR_BSG_BUFTYPE_DATA_OUT: sgl_iter = sgl_dout_iter; sgl_dout_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_TO_DEVICE; dout_cnt++; dout_size += buf_entries->buf_len; if ((dout_cnt > 1) && !is_rmcb) invalid_be = 1; break; case MPI3MR_BSG_BUFTYPE_MPI_REPLY: sgl_iter = sgl_din_iter; sgl_din_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_NONE; mpirep_offset = count; if (!buf_entries->buf_len) invalid_be = 1; break; case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE: sgl_iter = sgl_din_iter; sgl_din_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_NONE; erb_offset = count; if (!buf_entries->buf_len) invalid_be = 1; break; case MPI3MR_BSG_BUFTYPE_MPI_REQUEST: sgl_iter = sgl_dout_iter; sgl_dout_iter += buf_entries->buf_len; drv_buf_iter->data_dir = DMA_NONE; mpi_msg_size = buf_entries->buf_len; if ((!mpi_msg_size || (mpi_msg_size % 4)) || (mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) { dprint_bsg_err(mrioc, "%s: invalid MPI message size\n", __func__); rval = -EINVAL; goto out; } memcpy(mpi_req, sgl_iter, buf_entries->buf_len); break; default: invalid_be = 1; break; } if (invalid_be) { dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n", __func__); rval = -EINVAL; goto out; } if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) { dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n", __func__); rval = -EINVAL; goto out; } if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) { dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n", __func__); rval = -EINVAL; goto out; } drv_buf_iter->bsg_buf = sgl_iter; drv_buf_iter->bsg_buf_len = buf_entries->buf_len; } if (is_rmcb && ((din_size + dout_size) > MPI3MR_MAX_APP_XFER_SIZE)) { dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size = %d, dout_size = %d\n", __func__, __LINE__, mpi_header->function, din_size, dout_size); rval = -EINVAL; goto out; } if (din_size > MPI3MR_MAX_APP_XFER_SIZE) { dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n", __func__, __LINE__, mpi_header->function, din_size); rval = -EINVAL; goto out; } if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) { dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n", __func__, __LINE__, mpi_header->function, dout_size); rval = -EINVAL; goto out; } if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) { if (din_size > MPI3MR_IOCTL_SGE_SIZE || dout_size > MPI3MR_IOCTL_SGE_SIZE) { dprint_bsg_err(mrioc, "%s:%d: invalid message size passed:%d:%d:%d:%d\n", __func__, __LINE__, din_cnt, dout_cnt, din_size, dout_size); rval = -EINVAL; goto out; } } drv_buf_iter = drv_bufs; for (count = 0; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->data_dir == DMA_NONE) continue; drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len; if (is_rmcb && !count) { drv_buf_iter->kern_buf_len = mrioc->ioctl_chain_sge.size; drv_buf_iter->kern_buf = mrioc->ioctl_chain_sge.addr; drv_buf_iter->kern_buf_dma = mrioc->ioctl_chain_sge.dma_addr; drv_buf_iter->dma_desc = NULL; drv_buf_iter->num_dma_desc = 0; memset(drv_buf_iter->kern_buf, 0, drv_buf_iter->kern_buf_len); tmplen = min(drv_buf_iter->kern_buf_len, drv_buf_iter->bsg_buf_len); rmc_size = tmplen; memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen); } else if (is_rmrb && (count == 1)) { drv_buf_iter->kern_buf_len = mrioc->ioctl_resp_sge.size; drv_buf_iter->kern_buf = mrioc->ioctl_resp_sge.addr; drv_buf_iter->kern_buf_dma = mrioc->ioctl_resp_sge.dma_addr; drv_buf_iter->dma_desc = NULL; drv_buf_iter->num_dma_desc = 0; memset(drv_buf_iter->kern_buf, 0, drv_buf_iter->kern_buf_len); tmplen = min(drv_buf_iter->kern_buf_len, drv_buf_iter->bsg_buf_len); drv_buf_iter->kern_buf_len = tmplen; memset(drv_buf_iter->bsg_buf, 0, drv_buf_iter->bsg_buf_len); } else { if (!drv_buf_iter->kern_buf_len) continue; if (mpi3mr_map_data_buffer_dma(mrioc, drv_buf_iter, desc_count)) { rval = -ENOMEM; dprint_bsg_err(mrioc, "%s:%d: mapping data buffers failed\n", __func__, __LINE__); goto out; } desc_count += drv_buf_iter->num_dma_desc; } } if (erb_offset != 0xFF) { sense_buff_k = kzalloc(erbsz, GFP_KERNEL); if (!sense_buff_k) { rval = -ENOMEM; goto out; } } if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) { rval = -ERESTARTSYS; goto out; } if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) { rval = -EAGAIN; dprint_bsg_err(mrioc, "%s: command is in use\n", __func__); mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } if (mrioc->unrecoverable) { dprint_bsg_err(mrioc, "%s: unrecoverable controller\n", __func__); rval = -EFAULT; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } if (mrioc->reset_in_progress) { dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__); rval = -EAGAIN; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } if (mrioc->stop_bsgs || mrioc->block_on_pci_err) { dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__); rval = -EAGAIN; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) { nvme_fmt = mpi3mr_get_nvme_data_fmt( (struct mpi3_nvme_encapsulated_request *)mpi_req); if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) { if (mpi3mr_build_nvme_prp(mrioc, (struct mpi3_nvme_encapsulated_request *)mpi_req, drv_bufs, bufcnt)) { rval = -ENOMEM; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } } else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 || nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) { if (mpi3mr_build_nvme_sgl(mrioc, (struct mpi3_nvme_encapsulated_request *)mpi_req, drv_bufs, bufcnt)) { rval = -EINVAL; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } } else { dprint_bsg_err(mrioc, "%s:invalid NVMe command format\n", __func__); rval = -EINVAL; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } } else { if (mpi3mr_bsg_build_sgl(mrioc, mpi_req, mpi_msg_size, drv_bufs, bufcnt, is_rmcb, is_rmrb, (dout_cnt + din_cnt))) { dprint_bsg_err(mrioc, "%s: sgl build failed\n", __func__); rval = -EAGAIN; mutex_unlock(&mrioc->bsg_cmds.mutex); goto out; } } if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) { tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req; if (tm_req->task_type != MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) { dev_handle = tm_req->dev_handle; block_io = 1; } } if (block_io) { tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle); if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) { stgt_priv = (struct mpi3mr_stgt_priv_data *) tgtdev->starget->hostdata; atomic_inc(&stgt_priv->block_io); mpi3mr_tgtdev_put(tgtdev); } } mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING; mrioc->bsg_cmds.is_waiting = 1; mrioc->bsg_cmds.callback = NULL; mrioc->bsg_cmds.is_sense = 0; mrioc->bsg_cmds.sensebuf = sense_buff_k; memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz); mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS); if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) { dprint_bsg_info(mrioc, "%s: posting bsg request to the controller\n", __func__); dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ, "bsg_mpi3_req"); if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) { drv_buf_iter = &drv_bufs[0]; dprint_dump(drv_buf_iter->kern_buf, rmc_size, "mpi3_mgmt_req"); } } init_completion(&mrioc->bsg_cmds.done); rval = mpi3mr_admin_request_post(mrioc, mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ, 0); if (rval) { mrioc->bsg_cmds.is_waiting = 0; dprint_bsg_err(mrioc, "%s: posting bsg request is failed\n", __func__); rval = -EAGAIN; goto out_unlock; } wait_for_completion_timeout(&mrioc->bsg_cmds.done, (karg->timeout * HZ)); if (block_io && stgt_priv) atomic_dec(&stgt_priv->block_io); if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) { mrioc->bsg_cmds.is_waiting = 0; rval = -EAGAIN; if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET) goto out_unlock; if (((mpi_header->function != MPI3_FUNCTION_SCSI_IO) && (mpi_header->function != MPI3_FUNCTION_NVME_ENCAPSULATED)) || (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR)) { ioc_info(mrioc, "%s: bsg request timedout after %d seconds\n", __func__, karg->timeout); if (!(mrioc->logging_level & MPI3_DEBUG_BSG_INFO)) { dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ, "bsg_mpi3_req"); if (mpi_header->function == MPI3_FUNCTION_MGMT_PASSTHROUGH) { drv_buf_iter = &drv_bufs[0]; dprint_dump(drv_buf_iter->kern_buf, rmc_size, "mpi3_mgmt_req"); } } } if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) || (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO)) { dprint_bsg_err(mrioc, "%s: bsg request timedout after %d seconds,\n" "issuing target reset to (0x%04x)\n", __func__, karg->timeout, mpi_header->function_dependent); mpi3mr_issue_tm(mrioc, MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET, mpi_header->function_dependent, 0, MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT, &mrioc->host_tm_cmds, &resp_code, NULL); } if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) && !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)) mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP_TIMEOUT, 1); goto out_unlock; } dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__); if (mrioc->prp_list_virt) { dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz, mrioc->prp_list_virt, mrioc->prp_list_dma); mrioc->prp_list_virt = NULL; } if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { dprint_bsg_info(mrioc, "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n", __func__, (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->bsg_cmds.ioc_loginfo); } if ((mpirep_offset != 0xFF) && drv_bufs[mpirep_offset].bsg_buf_len) { drv_buf_iter = &drv_bufs[mpirep_offset]; drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) + mrioc->reply_sz); bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL); if (!bsg_reply_buf) { rval = -ENOMEM; goto out_unlock; } if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) { bsg_reply_buf->mpi_reply_type = MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS; memcpy(bsg_reply_buf->reply_buf, mrioc->bsg_cmds.reply, mrioc->reply_sz); } else { bsg_reply_buf->mpi_reply_type = MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS; status_desc = (struct mpi3_status_reply_descriptor *) bsg_reply_buf->reply_buf; status_desc->ioc_status = mrioc->bsg_cmds.ioc_status; status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo; } tmplen = min(drv_buf_iter->kern_buf_len, drv_buf_iter->bsg_buf_len); memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen); } if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf && mrioc->bsg_cmds.is_sense) { drv_buf_iter = &drv_bufs[erb_offset]; tmplen = min(erbsz, drv_buf_iter->bsg_buf_len); memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen); } drv_buf_iter = drv_bufs; for (count = 0; count < bufcnt; count++, drv_buf_iter++) { if (drv_buf_iter->data_dir == DMA_NONE) continue; if ((count == 1) && is_rmrb) { memcpy(drv_buf_iter->bsg_buf, drv_buf_iter->kern_buf, drv_buf_iter->kern_buf_len); } else if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) { tmplen = 0; for (desc_count = 0; desc_count < drv_buf_iter->num_dma_desc; desc_count++) { memcpy(((u8 *)drv_buf_iter->bsg_buf + tmplen), drv_buf_iter->dma_desc[desc_count].addr, drv_buf_iter->dma_desc[desc_count].size); tmplen += drv_buf_iter->dma_desc[desc_count].size; } } } out_unlock: if (din_buf) { job->reply_payload_rcv_len = sg_copy_from_buffer(job->reply_payload.sg_list, job->reply_payload.sg_cnt, din_buf, job->reply_payload.payload_len); } mrioc->bsg_cmds.is_sense = 0; mrioc->bsg_cmds.sensebuf = NULL; mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->bsg_cmds.mutex); out: kfree(sense_buff_k); kfree(dout_buf); kfree(din_buf); kfree(mpi_req); if (drv_bufs) { drv_buf_iter = drv_bufs; for (count = 0; count < bufcnt; count++, drv_buf_iter++) kfree(drv_buf_iter->dma_desc); kfree(drv_bufs); } kfree(bsg_reply_buf); return rval; } /** * mpi3mr_app_save_logdata - Save Log Data events * @mrioc: Adapter instance reference * @event_data: event data associated with log data event * @event_data_size: event data size to copy * * If log data event caching is enabled by the applicatiobns, * then this function saves the log data in the circular queue * and Sends async signal SIGIO to indicate there is an async * event from the firmware to the event monitoring applications. * * Return:Nothing */ void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data, u16 event_data_size) { u32 index = mrioc->logdata_buf_idx, sz; struct mpi3mr_logdata_entry *entry; if (!(mrioc->logdata_buf)) return; entry = (struct mpi3mr_logdata_entry *) (mrioc->logdata_buf + (index * mrioc->logdata_entry_sz)); entry->valid_entry = 1; sz = min(mrioc->logdata_entry_sz, event_data_size); memcpy(entry->data, event_data, sz); mrioc->logdata_buf_idx = ((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES); atomic64_inc(&event_counter); } /** * mpi3mr_bsg_request - bsg request entry point * @job: BSG job reference * * This is driver's entry point for bsg requests * * Return: 0 on success and proper error codes on failure */ static int mpi3mr_bsg_request(struct bsg_job *job) { long rval = -EINVAL; unsigned int reply_payload_rcv_len = 0; struct mpi3mr_bsg_packet *bsg_req = job->request; switch (bsg_req->cmd_type) { case MPI3MR_DRV_CMD: rval = mpi3mr_bsg_process_drv_cmds(job); break; case MPI3MR_MPT_CMD: rval = mpi3mr_bsg_process_mpt_cmds(job); break; default: pr_err("%s: unsupported BSG command(0x%08x)\n", MPI3MR_DRIVER_NAME, bsg_req->cmd_type); break; } bsg_job_done(job, rval, reply_payload_rcv_len); return 0; } /** * mpi3mr_bsg_exit - de-registration from bsg layer * @mrioc: Adapter instance reference * * This will be called during driver unload and all * bsg resources allocated during load will be freed. * * Return:Nothing */ void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc) { struct device *bsg_dev = &mrioc->bsg_dev; if (!mrioc->bsg_queue) return; bsg_remove_queue(mrioc->bsg_queue); mrioc->bsg_queue = NULL; device_del(bsg_dev); put_device(bsg_dev); } /** * mpi3mr_bsg_node_release -release bsg device node * @dev: bsg device node * * decrements bsg dev parent reference count * * Return:Nothing */ static void mpi3mr_bsg_node_release(struct device *dev) { put_device(dev->parent); } /** * mpi3mr_bsg_init - registration with bsg layer * @mrioc: Adapter instance reference * * This will be called during driver load and it will * register driver with bsg layer * * Return:Nothing */ void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc) { struct device *bsg_dev = &mrioc->bsg_dev; struct device *parent = &mrioc->shost->shost_gendev; struct queue_limits lim = { .max_hw_sectors = MPI3MR_MAX_APP_XFER_SECTORS, .max_segments = MPI3MR_MAX_APP_XFER_SEGMENTS, }; device_initialize(bsg_dev); bsg_dev->parent = get_device(parent); bsg_dev->release = mpi3mr_bsg_node_release; dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id); if (device_add(bsg_dev)) { ioc_err(mrioc, "%s: bsg device add failed\n", dev_name(bsg_dev)); put_device(bsg_dev); return; } mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev), &lim, mpi3mr_bsg_request, NULL, 0); if (IS_ERR(mrioc->bsg_queue)) { ioc_err(mrioc, "%s: bsg registration failed\n", dev_name(bsg_dev)); device_del(bsg_dev); put_device(bsg_dev); } } /** * version_fw_show - SysFS callback for firmware version read * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying firmware version */ static ssize_t version_fw_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver; return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n", fwver->gen_major, fwver->gen_minor, fwver->ph_major, fwver->ph_minor, fwver->cust_id, fwver->build_num); } static DEVICE_ATTR_RO(version_fw); /** * fw_queue_depth_show - SysFS callback for firmware max cmds * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying firmware max commands */ static ssize_t fw_queue_depth_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs); } static DEVICE_ATTR_RO(fw_queue_depth); /** * op_req_q_count_show - SysFS callback for request queue count * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying request queue count */ static ssize_t op_req_q_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q); } static DEVICE_ATTR_RO(op_req_q_count); /** * reply_queue_count_show - SysFS callback for reply queue count * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying reply queue count */ static ssize_t reply_queue_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q); } static DEVICE_ATTR_RO(reply_queue_count); /** * logging_level_show - Show controller debug level * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * A sysfs 'read/write' shost attribute, to show the current * debug log level used by the driver for the specific * controller. * * Return: sysfs_emit() return */ static ssize_t logging_level_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); return sysfs_emit(buf, "%08xh\n", mrioc->logging_level); } /** * logging_level_store- Change controller debug level * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * @count: size of the buffer * * A sysfs 'read/write' shost attribute, to change the current * debug log level used by the driver for the specific * controller. * * Return: strlen() return */ static ssize_t logging_level_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); int val = 0; if (kstrtoint(buf, 0, &val) != 0) return -EINVAL; mrioc->logging_level = val; ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level); return strlen(buf); } static DEVICE_ATTR_RW(logging_level); /** * adp_state_show() - SysFS callback for adapter state show * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying adapter state */ static ssize_t adp_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct mpi3mr_ioc *mrioc = shost_priv(shost); enum mpi3mr_iocstate ioc_state; uint8_t adp_state; ioc_state = mpi3mr_get_iocstate(mrioc); if (ioc_state == MRIOC_STATE_UNRECOVERABLE) adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE; else if (mrioc->reset_in_progress || mrioc->stop_bsgs || mrioc->block_on_pci_err) adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET; else if (ioc_state == MRIOC_STATE_FAULT) adp_state = MPI3MR_BSG_ADPSTATE_FAULT; else adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL; return sysfs_emit(buf, "%u\n", adp_state); } static DEVICE_ATTR_RO(adp_state); static struct attribute *mpi3mr_host_attrs[] = { &dev_attr_version_fw.attr, &dev_attr_fw_queue_depth.attr, &dev_attr_op_req_q_count.attr, &dev_attr_reply_queue_count.attr, &dev_attr_logging_level.attr, &dev_attr_adp_state.attr, NULL, }; static const struct attribute_group mpi3mr_host_attr_group = { .attrs = mpi3mr_host_attrs }; const struct attribute_group *mpi3mr_host_groups[] = { &mpi3mr_host_attr_group, NULL, }; /* * SCSI Device attributes under sysfs */ /** * sas_address_show - SysFS callback for dev SASaddress display * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying SAS address of the * specific SAS/SATA end device. */ static ssize_t sas_address_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct mpi3mr_sdev_priv_data *sdev_priv_data; struct mpi3mr_stgt_priv_data *tgt_priv_data; struct mpi3mr_tgt_dev *tgtdev; sdev_priv_data = sdev->hostdata; if (!sdev_priv_data) return 0; tgt_priv_data = sdev_priv_data->tgt_priv_data; if (!tgt_priv_data) return 0; tgtdev = tgt_priv_data->tgt_dev; if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA) return 0; return sysfs_emit(buf, "0x%016llx\n", (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address); } static DEVICE_ATTR_RO(sas_address); /** * device_handle_show - SysFS callback for device handle display * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying firmware internal * device handle of the specific device. */ static ssize_t device_handle_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct mpi3mr_sdev_priv_data *sdev_priv_data; struct mpi3mr_stgt_priv_data *tgt_priv_data; struct mpi3mr_tgt_dev *tgtdev; sdev_priv_data = sdev->hostdata; if (!sdev_priv_data) return 0; tgt_priv_data = sdev_priv_data->tgt_priv_data; if (!tgt_priv_data) return 0; tgtdev = tgt_priv_data->tgt_dev; if (!tgtdev) return 0; return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle); } static DEVICE_ATTR_RO(device_handle); /** * persistent_id_show - SysFS callback for persisten ID display * @dev: class device * @attr: Device attributes * @buf: Buffer to copy * * Return: sysfs_emit() return after copying persistent ID of the * of the specific device. */ static ssize_t persistent_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct mpi3mr_sdev_priv_data *sdev_priv_data; struct mpi3mr_stgt_priv_data *tgt_priv_data; struct mpi3mr_tgt_dev *tgtdev; sdev_priv_data = sdev->hostdata; if (!sdev_priv_data) return 0; tgt_priv_data = sdev_priv_data->tgt_priv_data; if (!tgt_priv_data) return 0; tgtdev = tgt_priv_data->tgt_dev; if (!tgtdev) return 0; return sysfs_emit(buf, "%d\n", tgtdev->perst_id); } static DEVICE_ATTR_RO(persistent_id); /** * sas_ncq_prio_supported_show - Indicate if device supports NCQ priority * @dev: pointer to embedded device * @attr: sas_ncq_prio_supported attribute descriptor * @buf: the buffer returned * * A sysfs 'read-only' sdev attribute, only works with SATA devices */ static ssize_t sas_ncq_prio_supported_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); return sysfs_emit(buf, "%d\n", sas_ata_ncq_prio_supported(sdev)); } static DEVICE_ATTR_RO(sas_ncq_prio_supported); /** * sas_ncq_prio_enable_show - send prioritized io commands to device * @dev: pointer to embedded device * @attr: sas_ncq_prio_enable attribute descriptor * @buf: the buffer returned * * A sysfs 'read/write' sdev attribute, only works with SATA devices */ static ssize_t sas_ncq_prio_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct mpi3mr_sdev_priv_data *sdev_priv_data = sdev->hostdata; if (!sdev_priv_data) return 0; return sysfs_emit(buf, "%d\n", sdev_priv_data->ncq_prio_enable); } static ssize_t sas_ncq_prio_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_device *sdev = to_scsi_device(dev); struct mpi3mr_sdev_priv_data *sdev_priv_data = sdev->hostdata; bool ncq_prio_enable = 0; if (kstrtobool(buf, &ncq_prio_enable)) return -EINVAL; if (!sas_ata_ncq_prio_supported(sdev)) return -EINVAL; sdev_priv_data->ncq_prio_enable = ncq_prio_enable; return strlen(buf); } static DEVICE_ATTR_RW(sas_ncq_prio_enable); static struct attribute *mpi3mr_dev_attrs[] = { &dev_attr_sas_address.attr, &dev_attr_device_handle.attr, &dev_attr_persistent_id.attr, &dev_attr_sas_ncq_prio_supported.attr, &dev_attr_sas_ncq_prio_enable.attr, NULL, }; static const struct attribute_group mpi3mr_dev_attr_group = { .attrs = mpi3mr_dev_attrs }; const struct attribute_group *mpi3mr_dev_groups[] = { &mpi3mr_dev_attr_group, NULL, };