// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright (C) 2017 Intel Deutschland GmbH * Copyright (C) 2018-2020, 2023-2024 Intel Corporation */ #include #include #include "iwl-debug.h" #include "iwl-csr.h" #include "iwl-io.h" #include "internal.h" #include "fw/api/tx.h" #include "fw/api/commands.h" #include "fw/api/datapath.h" #include "iwl-scd.h" static struct page *get_workaround_page(struct iwl_trans *trans, struct sk_buff *skb) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_tso_page_info *info; struct page **page_ptr; struct page *ret; dma_addr_t phys; page_ptr = (void *)((u8 *)skb->cb + trans_pcie->txqs.page_offs); ret = alloc_page(GFP_ATOMIC); if (!ret) return NULL; info = IWL_TSO_PAGE_INFO(page_address(ret)); /* Create a DMA mapping for the page */ phys = dma_map_page_attrs(trans->dev, ret, 0, PAGE_SIZE, DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); if (unlikely(dma_mapping_error(trans->dev, phys))) { __free_page(ret); return NULL; } /* Store physical address and set use count */ info->dma_addr = phys; refcount_set(&info->use_count, 1); /* set the chaining pointer to the previous page if there */ info->next = *page_ptr; *page_ptr = ret; return ret; } /* * Add a TB and if needed apply the FH HW bug workaround; * meta != NULL indicates that it's a page mapping and we * need to dma_unmap_page() and set the meta->tbs bit in * this case. */ static int iwl_txq_gen2_set_tb_with_wa(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_tfh_tfd *tfd, dma_addr_t phys, void *virt, u16 len, struct iwl_cmd_meta *meta, bool unmap) { dma_addr_t oldphys = phys; struct page *page; int ret; if (unlikely(dma_mapping_error(trans->dev, phys))) return -ENOMEM; if (likely(!iwl_txq_crosses_4g_boundary(phys, len))) { ret = iwl_txq_gen2_set_tb(trans, tfd, phys, len); if (ret < 0) goto unmap; if (meta) meta->tbs |= BIT(ret); ret = 0; goto trace; } /* * Work around a hardware bug. If (as expressed in the * condition above) the TB ends on a 32-bit boundary, * then the next TB may be accessed with the wrong * address. * To work around it, copy the data elsewhere and make * a new mapping for it so the device will not fail. */ if (WARN_ON(len > IWL_TSO_PAGE_DATA_SIZE)) { ret = -ENOBUFS; goto unmap; } page = get_workaround_page(trans, skb); if (!page) { ret = -ENOMEM; goto unmap; } memcpy(page_address(page), virt, len); /* * This is a bit odd, but performance does not matter here, what * matters are the expectations of the calling code and TB cleanup * function. * * As such, if unmap is set, then create another mapping for the TB * entry as it will be unmapped later. On the other hand, if it is not * set, then the TB entry will not be unmapped and instead we simply * reference and sync the mapping that get_workaround_page() created. */ if (unmap) { phys = dma_map_single(trans->dev, page_address(page), len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, phys))) return -ENOMEM; } else { phys = iwl_pcie_get_tso_page_phys(page_address(page)); dma_sync_single_for_device(trans->dev, phys, len, DMA_TO_DEVICE); } ret = iwl_txq_gen2_set_tb(trans, tfd, phys, len); if (ret < 0) { /* unmap the new allocation as single */ oldphys = phys; meta = NULL; goto unmap; } IWL_DEBUG_TX(trans, "TB bug workaround: copied %d bytes from 0x%llx to 0x%llx\n", len, (unsigned long long)oldphys, (unsigned long long)phys); ret = 0; unmap: if (!unmap) goto trace; if (meta) dma_unmap_page(trans->dev, oldphys, len, DMA_TO_DEVICE); else dma_unmap_single(trans->dev, oldphys, len, DMA_TO_DEVICE); trace: trace_iwlwifi_dev_tx_tb(trans->dev, skb, virt, phys, len); return ret; } static int iwl_txq_gen2_build_amsdu(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_tfh_tfd *tfd, struct iwl_cmd_meta *out_meta, int start_len, u8 hdr_len, struct iwl_device_tx_cmd *dev_cmd) { #ifdef CONFIG_INET struct iwl_tx_cmd_gen2 *tx_cmd = (void *)dev_cmd->payload; struct ieee80211_hdr *hdr = (void *)skb->data; unsigned int snap_ip_tcp_hdrlen, ip_hdrlen, total_len, hdr_room; unsigned int mss = skb_shinfo(skb)->gso_size; unsigned int data_offset = 0; dma_addr_t start_hdr_phys; u16 length, amsdu_pad; u8 *start_hdr; struct sg_table *sgt; struct tso_t tso; trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd), &dev_cmd->hdr, start_len, 0); ip_hdrlen = skb_network_header_len(skb); snap_ip_tcp_hdrlen = 8 + ip_hdrlen + tcp_hdrlen(skb); total_len = skb->len - snap_ip_tcp_hdrlen - hdr_len; amsdu_pad = 0; /* total amount of header we may need for this A-MSDU */ hdr_room = DIV_ROUND_UP(total_len, mss) * (3 + snap_ip_tcp_hdrlen + sizeof(struct ethhdr)); /* Our device supports 9 segments at most, it will fit in 1 page */ sgt = iwl_pcie_prep_tso(trans, skb, out_meta, &start_hdr, hdr_room); if (!sgt) return -ENOMEM; start_hdr_phys = iwl_pcie_get_tso_page_phys(start_hdr); /* * Pull the ieee80211 header to be able to use TSO core, * we will restore it for the tx_status flow. */ skb_pull(skb, hdr_len); /* * Remove the length of all the headers that we don't actually * have in the MPDU by themselves, but that we duplicate into * all the different MSDUs inside the A-MSDU. */ le16_add_cpu(&tx_cmd->len, -snap_ip_tcp_hdrlen); tso_start(skb, &tso); while (total_len) { /* this is the data left for this subframe */ unsigned int data_left = min_t(unsigned int, mss, total_len); unsigned int tb_len; dma_addr_t tb_phys; u8 *pos_hdr = start_hdr; total_len -= data_left; memset(pos_hdr, 0, amsdu_pad); pos_hdr += amsdu_pad; amsdu_pad = (4 - (sizeof(struct ethhdr) + snap_ip_tcp_hdrlen + data_left)) & 0x3; ether_addr_copy(pos_hdr, ieee80211_get_DA(hdr)); pos_hdr += ETH_ALEN; ether_addr_copy(pos_hdr, ieee80211_get_SA(hdr)); pos_hdr += ETH_ALEN; length = snap_ip_tcp_hdrlen + data_left; *((__be16 *)pos_hdr) = cpu_to_be16(length); pos_hdr += sizeof(length); /* * This will copy the SNAP as well which will be considered * as MAC header. */ tso_build_hdr(skb, pos_hdr, &tso, data_left, !total_len); pos_hdr += snap_ip_tcp_hdrlen; tb_len = pos_hdr - start_hdr; tb_phys = iwl_pcie_get_tso_page_phys(start_hdr); /* * No need for _with_wa, this is from the TSO page and * we leave some space at the end of it so can't hit * the buggy scenario. */ iwl_txq_gen2_set_tb(trans, tfd, tb_phys, tb_len); trace_iwlwifi_dev_tx_tb(trans->dev, skb, start_hdr, tb_phys, tb_len); /* add this subframe's headers' length to the tx_cmd */ le16_add_cpu(&tx_cmd->len, tb_len); /* prepare the start_hdr for the next subframe */ start_hdr = pos_hdr; /* put the payload */ while (data_left) { int ret; tb_len = min_t(unsigned int, tso.size, data_left); tb_phys = iwl_pcie_get_sgt_tb_phys(sgt, data_offset, tb_len); /* Not a real mapping error, use direct comparison */ if (unlikely(tb_phys == DMA_MAPPING_ERROR)) goto out_err; ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys, tso.data, tb_len, NULL, false); if (ret) goto out_err; data_left -= tb_len; data_offset += tb_len; tso_build_data(skb, &tso, tb_len); } } dma_sync_single_for_device(trans->dev, start_hdr_phys, hdr_room, DMA_TO_DEVICE); /* re -add the WiFi header */ skb_push(skb, hdr_len); return 0; out_err: #endif return -EINVAL; } static struct iwl_tfh_tfd *iwl_txq_gen2_build_tx_amsdu(struct iwl_trans *trans, struct iwl_txq *txq, struct iwl_device_tx_cmd *dev_cmd, struct sk_buff *skb, struct iwl_cmd_meta *out_meta, int hdr_len, int tx_cmd_len) { int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx); dma_addr_t tb_phys; int len; void *tb1_addr; tb_phys = iwl_txq_get_first_tb_dma(txq, idx); /* * No need for _with_wa, the first TB allocation is aligned up * to a 64-byte boundary and thus can't be at the end or cross * a page boundary (much less a 2^32 boundary). */ iwl_txq_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE); /* * The second TB (tb1) points to the remainder of the TX command * and the 802.11 header - dword aligned size * (This calculation modifies the TX command, so do it before the * setup of the first TB) */ len = tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len - IWL_FIRST_TB_SIZE; /* do not align A-MSDU to dword as the subframe header aligns it */ /* map the data for TB1 */ tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE; tb_phys = dma_map_single(trans->dev, tb1_addr, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb_phys))) goto out_err; /* * No need for _with_wa(), we ensure (via alignment) that the data * here can never cross or end at a page boundary. */ iwl_txq_gen2_set_tb(trans, tfd, tb_phys, len); if (iwl_txq_gen2_build_amsdu(trans, skb, tfd, out_meta, len + IWL_FIRST_TB_SIZE, hdr_len, dev_cmd)) goto out_err; /* building the A-MSDU might have changed this data, memcpy it now */ memcpy(&txq->first_tb_bufs[idx], dev_cmd, IWL_FIRST_TB_SIZE); return tfd; out_err: iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd); return NULL; } static int iwl_txq_gen2_tx_add_frags(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_tfh_tfd *tfd, struct iwl_cmd_meta *out_meta) { int i; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; dma_addr_t tb_phys; unsigned int fragsz = skb_frag_size(frag); int ret; if (!fragsz) continue; tb_phys = skb_frag_dma_map(trans->dev, frag, 0, fragsz, DMA_TO_DEVICE); ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys, skb_frag_address(frag), fragsz, out_meta, true); if (ret) return ret; } return 0; } static struct iwl_tfh_tfd *iwl_txq_gen2_build_tx(struct iwl_trans *trans, struct iwl_txq *txq, struct iwl_device_tx_cmd *dev_cmd, struct sk_buff *skb, struct iwl_cmd_meta *out_meta, int hdr_len, int tx_cmd_len, bool pad) { int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx); dma_addr_t tb_phys; int len, tb1_len, tb2_len; void *tb1_addr; struct sk_buff *frag; tb_phys = iwl_txq_get_first_tb_dma(txq, idx); /* The first TB points to bi-directional DMA data */ memcpy(&txq->first_tb_bufs[idx], dev_cmd, IWL_FIRST_TB_SIZE); /* * No need for _with_wa, the first TB allocation is aligned up * to a 64-byte boundary and thus can't be at the end or cross * a page boundary (much less a 2^32 boundary). */ iwl_txq_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE); /* * The second TB (tb1) points to the remainder of the TX command * and the 802.11 header - dword aligned size * (This calculation modifies the TX command, so do it before the * setup of the first TB) */ len = tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len - IWL_FIRST_TB_SIZE; if (pad) tb1_len = ALIGN(len, 4); else tb1_len = len; /* map the data for TB1 */ tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE; tb_phys = dma_map_single(trans->dev, tb1_addr, tb1_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb_phys))) goto out_err; /* * No need for _with_wa(), we ensure (via alignment) that the data * here can never cross or end at a page boundary. */ iwl_txq_gen2_set_tb(trans, tfd, tb_phys, tb1_len); trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd), &dev_cmd->hdr, IWL_FIRST_TB_SIZE + tb1_len, hdr_len); /* set up TFD's third entry to point to remainder of skb's head */ tb2_len = skb_headlen(skb) - hdr_len; if (tb2_len > 0) { int ret; tb_phys = dma_map_single(trans->dev, skb->data + hdr_len, tb2_len, DMA_TO_DEVICE); ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys, skb->data + hdr_len, tb2_len, NULL, true); if (ret) goto out_err; } if (iwl_txq_gen2_tx_add_frags(trans, skb, tfd, out_meta)) goto out_err; skb_walk_frags(skb, frag) { int ret; tb_phys = dma_map_single(trans->dev, frag->data, skb_headlen(frag), DMA_TO_DEVICE); ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys, frag->data, skb_headlen(frag), NULL, true); if (ret) goto out_err; if (iwl_txq_gen2_tx_add_frags(trans, frag, tfd, out_meta)) goto out_err; } return tfd; out_err: iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd); return NULL; } static struct iwl_tfh_tfd *iwl_txq_gen2_build_tfd(struct iwl_trans *trans, struct iwl_txq *txq, struct iwl_device_tx_cmd *dev_cmd, struct sk_buff *skb, struct iwl_cmd_meta *out_meta) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx); int len, hdr_len; bool amsdu; /* There must be data left over for TB1 or this code must be changed */ BUILD_BUG_ON(sizeof(struct iwl_tx_cmd_gen2) < IWL_FIRST_TB_SIZE); BUILD_BUG_ON(sizeof(struct iwl_cmd_header) + offsetofend(struct iwl_tx_cmd_gen2, dram_info) > IWL_FIRST_TB_SIZE); BUILD_BUG_ON(sizeof(struct iwl_tx_cmd_gen3) < IWL_FIRST_TB_SIZE); BUILD_BUG_ON(sizeof(struct iwl_cmd_header) + offsetofend(struct iwl_tx_cmd_gen3, dram_info) > IWL_FIRST_TB_SIZE); memset(tfd, 0, sizeof(*tfd)); if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210) len = sizeof(struct iwl_tx_cmd_gen2); else len = sizeof(struct iwl_tx_cmd_gen3); amsdu = ieee80211_is_data_qos(hdr->frame_control) && (*ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_A_MSDU_PRESENT); hdr_len = ieee80211_hdrlen(hdr->frame_control); /* * Only build A-MSDUs here if doing so by GSO, otherwise it may be * an A-MSDU for other reasons, e.g. NAN or an A-MSDU having been * built in the higher layers already. */ if (amsdu && skb_shinfo(skb)->gso_size) return iwl_txq_gen2_build_tx_amsdu(trans, txq, dev_cmd, skb, out_meta, hdr_len, len); return iwl_txq_gen2_build_tx(trans, txq, dev_cmd, skb, out_meta, hdr_len, len, !amsdu); } int iwl_txq_space(struct iwl_trans *trans, const struct iwl_txq *q) { unsigned int max; unsigned int used; /* * To avoid ambiguity between empty and completely full queues, there * should always be less than max_tfd_queue_size elements in the queue. * If q->n_window is smaller than max_tfd_queue_size, there is no need * to reserve any queue entries for this purpose. */ if (q->n_window < trans->trans_cfg->base_params->max_tfd_queue_size) max = q->n_window; else max = trans->trans_cfg->base_params->max_tfd_queue_size - 1; /* * max_tfd_queue_size is a power of 2, so the following is equivalent to * modulo by max_tfd_queue_size and is well defined. */ used = (q->write_ptr - q->read_ptr) & (trans->trans_cfg->base_params->max_tfd_queue_size - 1); if (WARN_ON(used > max)) return 0; return max - used; } /* * iwl_pcie_gen2_update_byte_tbl - Set up entry in Tx byte-count array */ static void iwl_pcie_gen2_update_byte_tbl(struct iwl_trans *trans, struct iwl_txq *txq, u16 byte_cnt, int num_tbs) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); u8 filled_tfd_size, num_fetch_chunks; u16 len = byte_cnt; __le16 bc_ent; if (WARN(idx >= txq->n_window, "%d >= %d\n", idx, txq->n_window)) return; filled_tfd_size = offsetof(struct iwl_tfh_tfd, tbs) + num_tbs * sizeof(struct iwl_tfh_tb); /* * filled_tfd_size contains the number of filled bytes in the TFD. * Dividing it by 64 will give the number of chunks to fetch * to SRAM- 0 for one chunk, 1 for 2 and so on. * If, for example, TFD contains only 3 TBs then 32 bytes * of the TFD are used, and only one chunk of 64 bytes should * be fetched */ num_fetch_chunks = DIV_ROUND_UP(filled_tfd_size, 64) - 1; if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { struct iwl_gen3_bc_tbl_entry *scd_bc_tbl_gen3 = txq->bc_tbl.addr; /* Starting from AX210, the HW expects bytes */ WARN_ON(trans_pcie->txqs.bc_table_dword); WARN_ON(len > 0x3FFF); bc_ent = cpu_to_le16(len | (num_fetch_chunks << 14)); scd_bc_tbl_gen3[idx].tfd_offset = bc_ent; } else { struct iwlagn_scd_bc_tbl *scd_bc_tbl = txq->bc_tbl.addr; /* Before AX210, the HW expects DW */ WARN_ON(!trans_pcie->txqs.bc_table_dword); len = DIV_ROUND_UP(len, 4); WARN_ON(len > 0xFFF); bc_ent = cpu_to_le16(len | (num_fetch_chunks << 12)); scd_bc_tbl->tfd_offset[idx] = bc_ent; } } static u8 iwl_txq_gen2_get_num_tbs(struct iwl_tfh_tfd *tfd) { return le16_to_cpu(tfd->num_tbs) & 0x1f; } int iwl_txq_gen2_set_tb(struct iwl_trans *trans, struct iwl_tfh_tfd *tfd, dma_addr_t addr, u16 len) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int idx = iwl_txq_gen2_get_num_tbs(tfd); struct iwl_tfh_tb *tb; /* Only WARN here so we know about the issue, but we mess up our * unmap path because not every place currently checks for errors * returned from this function - it can only return an error if * there's no more space, and so when we know there is enough we * don't always check ... */ WARN(iwl_txq_crosses_4g_boundary(addr, len), "possible DMA problem with iova:0x%llx, len:%d\n", (unsigned long long)addr, len); if (WARN_ON(idx >= IWL_TFH_NUM_TBS)) return -EINVAL; tb = &tfd->tbs[idx]; /* Each TFD can point to a maximum max_tbs Tx buffers */ if (le16_to_cpu(tfd->num_tbs) >= trans_pcie->txqs.tfd.max_tbs) { IWL_ERR(trans, "Error can not send more than %d chunks\n", trans_pcie->txqs.tfd.max_tbs); return -EINVAL; } put_unaligned_le64(addr, &tb->addr); tb->tb_len = cpu_to_le16(len); tfd->num_tbs = cpu_to_le16(idx + 1); return idx; } void iwl_txq_gen2_tfd_unmap(struct iwl_trans *trans, struct iwl_cmd_meta *meta, struct iwl_tfh_tfd *tfd) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int i, num_tbs; /* Sanity check on number of chunks */ num_tbs = iwl_txq_gen2_get_num_tbs(tfd); if (num_tbs > trans_pcie->txqs.tfd.max_tbs) { IWL_ERR(trans, "Too many chunks: %i\n", num_tbs); return; } /* TB1 is mapped directly, the rest is the TSO page and SG list. */ if (meta->sg_offset) num_tbs = 2; /* first TB is never freed - it's the bidirectional DMA data */ for (i = 1; i < num_tbs; i++) { if (meta->tbs & BIT(i)) dma_unmap_page(trans->dev, le64_to_cpu(tfd->tbs[i].addr), le16_to_cpu(tfd->tbs[i].tb_len), DMA_TO_DEVICE); else dma_unmap_single(trans->dev, le64_to_cpu(tfd->tbs[i].addr), le16_to_cpu(tfd->tbs[i].tb_len), DMA_TO_DEVICE); } iwl_txq_set_tfd_invalid_gen2(trans, tfd); } static void iwl_txq_gen2_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq) { /* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and * idx is bounded by n_window */ int idx = iwl_txq_get_cmd_index(txq, txq->read_ptr); struct sk_buff *skb; lockdep_assert_held(&txq->lock); if (!txq->entries) return; iwl_txq_gen2_tfd_unmap(trans, &txq->entries[idx].meta, iwl_txq_get_tfd(trans, txq, idx)); skb = txq->entries[idx].skb; /* Can be called from irqs-disabled context * If skb is not NULL, it means that the whole queue is being * freed and that the queue is not empty - free the skb */ if (skb) { iwl_op_mode_free_skb(trans->op_mode, skb); txq->entries[idx].skb = NULL; } } /* * iwl_txq_inc_wr_ptr - Send new write index to hardware */ static void iwl_txq_inc_wr_ptr(struct iwl_trans *trans, struct iwl_txq *txq) { lockdep_assert_held(&txq->lock); IWL_DEBUG_TX(trans, "Q:%d WR: 0x%x\n", txq->id, txq->write_ptr); /* * if not in power-save mode, uCode will never sleep when we're * trying to tx (during RFKILL, we're not trying to tx). */ iwl_write32(trans, HBUS_TARG_WRPTR, txq->write_ptr | (txq->id << 16)); } int iwl_txq_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_tx_cmd *dev_cmd, int txq_id) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_cmd_meta *out_meta; struct iwl_txq *txq = trans_pcie->txqs.txq[txq_id]; u16 cmd_len; int idx; void *tfd; if (WARN_ONCE(txq_id >= IWL_MAX_TVQM_QUEUES, "queue %d out of range", txq_id)) return -EINVAL; if (WARN_ONCE(!test_bit(txq_id, trans_pcie->txqs.queue_used), "TX on unused queue %d\n", txq_id)) return -EINVAL; if (skb_is_nonlinear(skb) && skb_shinfo(skb)->nr_frags > IWL_TRANS_PCIE_MAX_FRAGS(trans_pcie) && __skb_linearize(skb)) return -ENOMEM; spin_lock(&txq->lock); if (iwl_txq_space(trans, txq) < txq->high_mark) { iwl_txq_stop(trans, txq); /* don't put the packet on the ring, if there is no room */ if (unlikely(iwl_txq_space(trans, txq) < 3)) { struct iwl_device_tx_cmd **dev_cmd_ptr; dev_cmd_ptr = (void *)((u8 *)skb->cb + trans_pcie->txqs.dev_cmd_offs); *dev_cmd_ptr = dev_cmd; __skb_queue_tail(&txq->overflow_q, skb); spin_unlock(&txq->lock); return 0; } } idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); /* Set up driver data for this TFD */ txq->entries[idx].skb = skb; txq->entries[idx].cmd = dev_cmd; dev_cmd->hdr.sequence = cpu_to_le16((u16)(QUEUE_TO_SEQ(txq_id) | INDEX_TO_SEQ(idx))); /* Set up first empty entry in queue's array of Tx/cmd buffers */ out_meta = &txq->entries[idx].meta; memset(out_meta, 0, sizeof(*out_meta)); tfd = iwl_txq_gen2_build_tfd(trans, txq, dev_cmd, skb, out_meta); if (!tfd) { spin_unlock(&txq->lock); return -1; } if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { struct iwl_tx_cmd_gen3 *tx_cmd_gen3 = (void *)dev_cmd->payload; cmd_len = le16_to_cpu(tx_cmd_gen3->len); } else { struct iwl_tx_cmd_gen2 *tx_cmd_gen2 = (void *)dev_cmd->payload; cmd_len = le16_to_cpu(tx_cmd_gen2->len); } /* Set up entry for this TFD in Tx byte-count array */ iwl_pcie_gen2_update_byte_tbl(trans, txq, cmd_len, iwl_txq_gen2_get_num_tbs(tfd)); /* start timer if queue currently empty */ if (txq->read_ptr == txq->write_ptr && txq->wd_timeout) mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); /* Tell device the write index *just past* this latest filled TFD */ txq->write_ptr = iwl_txq_inc_wrap(trans, txq->write_ptr); iwl_txq_inc_wr_ptr(trans, txq); /* * At this point the frame is "transmitted" successfully * and we will get a TX status notification eventually. */ spin_unlock(&txq->lock); return 0; } /*************** HOST COMMAND QUEUE FUNCTIONS *****/ /* * iwl_txq_gen2_unmap - Unmap any remaining DMA mappings and free skb's */ static void iwl_txq_gen2_unmap(struct iwl_trans *trans, int txq_id) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = trans_pcie->txqs.txq[txq_id]; spin_lock_bh(&txq->reclaim_lock); spin_lock(&txq->lock); while (txq->write_ptr != txq->read_ptr) { IWL_DEBUG_TX_REPLY(trans, "Q %d Free %d\n", txq_id, txq->read_ptr); if (txq_id != trans_pcie->txqs.cmd.q_id) { int idx = iwl_txq_get_cmd_index(txq, txq->read_ptr); struct iwl_cmd_meta *cmd_meta = &txq->entries[idx].meta; struct sk_buff *skb = txq->entries[idx].skb; if (!WARN_ON_ONCE(!skb)) iwl_pcie_free_tso_pages(trans, skb, cmd_meta); } iwl_txq_gen2_free_tfd(trans, txq); txq->read_ptr = iwl_txq_inc_wrap(trans, txq->read_ptr); } while (!skb_queue_empty(&txq->overflow_q)) { struct sk_buff *skb = __skb_dequeue(&txq->overflow_q); iwl_op_mode_free_skb(trans->op_mode, skb); } spin_unlock(&txq->lock); spin_unlock_bh(&txq->reclaim_lock); /* just in case - this queue may have been stopped */ iwl_trans_pcie_wake_queue(trans, txq); } static void iwl_txq_gen2_free_memory(struct iwl_trans *trans, struct iwl_txq *txq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct device *dev = trans->dev; /* De-alloc circular buffer of TFDs */ if (txq->tfds) { dma_free_coherent(dev, trans_pcie->txqs.tfd.size * txq->n_window, txq->tfds, txq->dma_addr); dma_free_coherent(dev, sizeof(*txq->first_tb_bufs) * txq->n_window, txq->first_tb_bufs, txq->first_tb_dma); } kfree(txq->entries); if (txq->bc_tbl.addr) dma_pool_free(trans_pcie->txqs.bc_pool, txq->bc_tbl.addr, txq->bc_tbl.dma); kfree(txq); } /* * iwl_pcie_txq_free - Deallocate DMA queue. * @txq: Transmit queue to deallocate. * * Empty queue by removing and destroying all BD's. * Free all buffers. * 0-fill, but do not free "txq" descriptor structure. */ static void iwl_txq_gen2_free(struct iwl_trans *trans, int txq_id) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq; int i; if (WARN_ONCE(txq_id >= IWL_MAX_TVQM_QUEUES, "queue %d out of range", txq_id)) return; txq = trans_pcie->txqs.txq[txq_id]; if (WARN_ON(!txq)) return; iwl_txq_gen2_unmap(trans, txq_id); /* De-alloc array of command/tx buffers */ if (txq_id == trans_pcie->txqs.cmd.q_id) for (i = 0; i < txq->n_window; i++) { kfree_sensitive(txq->entries[i].cmd); kfree_sensitive(txq->entries[i].free_buf); } del_timer_sync(&txq->stuck_timer); iwl_txq_gen2_free_memory(trans, txq); trans_pcie->txqs.txq[txq_id] = NULL; clear_bit(txq_id, trans_pcie->txqs.queue_used); } static struct iwl_txq * iwl_txq_dyn_alloc_dma(struct iwl_trans *trans, int size, unsigned int timeout) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); size_t bc_tbl_size, bc_tbl_entries; struct iwl_txq *txq; int ret; WARN_ON(!trans_pcie->txqs.bc_tbl_size); bc_tbl_size = trans_pcie->txqs.bc_tbl_size; bc_tbl_entries = bc_tbl_size / sizeof(u16); if (WARN_ON(size > bc_tbl_entries)) return ERR_PTR(-EINVAL); txq = kzalloc(sizeof(*txq), GFP_KERNEL); if (!txq) return ERR_PTR(-ENOMEM); txq->bc_tbl.addr = dma_pool_alloc(trans_pcie->txqs.bc_pool, GFP_KERNEL, &txq->bc_tbl.dma); if (!txq->bc_tbl.addr) { IWL_ERR(trans, "Scheduler BC Table allocation failed\n"); kfree(txq); return ERR_PTR(-ENOMEM); } ret = iwl_pcie_txq_alloc(trans, txq, size, false); if (ret) { IWL_ERR(trans, "Tx queue alloc failed\n"); goto error; } ret = iwl_txq_init(trans, txq, size, false); if (ret) { IWL_ERR(trans, "Tx queue init failed\n"); goto error; } txq->wd_timeout = msecs_to_jiffies(timeout); return txq; error: iwl_txq_gen2_free_memory(trans, txq); return ERR_PTR(ret); } static int iwl_pcie_txq_alloc_response(struct iwl_trans *trans, struct iwl_txq *txq, struct iwl_host_cmd *hcmd) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_tx_queue_cfg_rsp *rsp; int ret, qid; u32 wr_ptr; if (WARN_ON(iwl_rx_packet_payload_len(hcmd->resp_pkt) != sizeof(*rsp))) { ret = -EINVAL; goto error_free_resp; } rsp = (void *)hcmd->resp_pkt->data; qid = le16_to_cpu(rsp->queue_number); wr_ptr = le16_to_cpu(rsp->write_pointer); if (qid >= ARRAY_SIZE(trans_pcie->txqs.txq)) { WARN_ONCE(1, "queue index %d unsupported", qid); ret = -EIO; goto error_free_resp; } if (test_and_set_bit(qid, trans_pcie->txqs.queue_used)) { WARN_ONCE(1, "queue %d already used", qid); ret = -EIO; goto error_free_resp; } if (WARN_ONCE(trans_pcie->txqs.txq[qid], "queue %d already allocated\n", qid)) { ret = -EIO; goto error_free_resp; } txq->id = qid; trans_pcie->txqs.txq[qid] = txq; wr_ptr &= (trans->trans_cfg->base_params->max_tfd_queue_size - 1); /* Place first TFD at index corresponding to start sequence number */ txq->read_ptr = wr_ptr; txq->write_ptr = wr_ptr; IWL_DEBUG_TX_QUEUES(trans, "Activate queue %d\n", qid); iwl_free_resp(hcmd); return qid; error_free_resp: iwl_free_resp(hcmd); iwl_txq_gen2_free_memory(trans, txq); return ret; } int iwl_txq_dyn_alloc(struct iwl_trans *trans, u32 flags, u32 sta_mask, u8 tid, int size, unsigned int timeout) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq; union { struct iwl_tx_queue_cfg_cmd old; struct iwl_scd_queue_cfg_cmd new; } cmd; struct iwl_host_cmd hcmd = { .flags = CMD_WANT_SKB, }; int ret; /* take the min with bytecount table entries allowed */ size = min_t(u32, size, trans_pcie->txqs.bc_tbl_size / sizeof(u16)); /* but must be power of 2 values for calculating read/write pointers */ size = rounddown_pow_of_two(size); if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_BZ && trans->hw_rev_step == SILICON_A_STEP) { size = 4096; txq = iwl_txq_dyn_alloc_dma(trans, size, timeout); } else { do { txq = iwl_txq_dyn_alloc_dma(trans, size, timeout); if (!IS_ERR(txq)) break; IWL_DEBUG_TX_QUEUES(trans, "Failed allocating TXQ of size %d for sta mask %x tid %d, ret: %ld\n", size, sta_mask, tid, PTR_ERR(txq)); size /= 2; } while (size >= 16); } if (IS_ERR(txq)) return PTR_ERR(txq); if (trans_pcie->txqs.queue_alloc_cmd_ver == 0) { memset(&cmd.old, 0, sizeof(cmd.old)); cmd.old.tfdq_addr = cpu_to_le64(txq->dma_addr); cmd.old.byte_cnt_addr = cpu_to_le64(txq->bc_tbl.dma); cmd.old.cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(size)); cmd.old.flags = cpu_to_le16(flags | TX_QUEUE_CFG_ENABLE_QUEUE); cmd.old.tid = tid; if (hweight32(sta_mask) != 1) { ret = -EINVAL; goto error; } cmd.old.sta_id = ffs(sta_mask) - 1; hcmd.id = SCD_QUEUE_CFG; hcmd.len[0] = sizeof(cmd.old); hcmd.data[0] = &cmd.old; } else if (trans_pcie->txqs.queue_alloc_cmd_ver == 3) { memset(&cmd.new, 0, sizeof(cmd.new)); cmd.new.operation = cpu_to_le32(IWL_SCD_QUEUE_ADD); cmd.new.u.add.tfdq_dram_addr = cpu_to_le64(txq->dma_addr); cmd.new.u.add.bc_dram_addr = cpu_to_le64(txq->bc_tbl.dma); cmd.new.u.add.cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(size)); cmd.new.u.add.flags = cpu_to_le32(flags); cmd.new.u.add.sta_mask = cpu_to_le32(sta_mask); cmd.new.u.add.tid = tid; hcmd.id = WIDE_ID(DATA_PATH_GROUP, SCD_QUEUE_CONFIG_CMD); hcmd.len[0] = sizeof(cmd.new); hcmd.data[0] = &cmd.new; } else { ret = -EOPNOTSUPP; goto error; } ret = iwl_trans_send_cmd(trans, &hcmd); if (ret) goto error; return iwl_pcie_txq_alloc_response(trans, txq, &hcmd); error: iwl_txq_gen2_free_memory(trans, txq); return ret; } void iwl_txq_dyn_free(struct iwl_trans *trans, int queue) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (WARN(queue >= IWL_MAX_TVQM_QUEUES, "queue %d out of range", queue)) return; /* * Upon HW Rfkill - we stop the device, and then stop the queues * in the op_mode. Just for the sake of the simplicity of the op_mode, * allow the op_mode to call txq_disable after it already called * stop_device. */ if (!test_and_clear_bit(queue, trans_pcie->txqs.queue_used)) { WARN_ONCE(test_bit(STATUS_DEVICE_ENABLED, &trans->status), "queue %d not used", queue); return; } iwl_txq_gen2_free(trans, queue); IWL_DEBUG_TX_QUEUES(trans, "Deactivate queue %d\n", queue); } void iwl_txq_gen2_tx_free(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int i; memset(trans_pcie->txqs.queue_used, 0, sizeof(trans_pcie->txqs.queue_used)); /* Free all TX queues */ for (i = 0; i < ARRAY_SIZE(trans_pcie->txqs.txq); i++) { if (!trans_pcie->txqs.txq[i]) continue; iwl_txq_gen2_free(trans, i); } } int iwl_txq_gen2_init(struct iwl_trans *trans, int txq_id, int queue_size) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *queue; int ret; /* alloc and init the tx queue */ if (!trans_pcie->txqs.txq[txq_id]) { queue = kzalloc(sizeof(*queue), GFP_KERNEL); if (!queue) { IWL_ERR(trans, "Not enough memory for tx queue\n"); return -ENOMEM; } trans_pcie->txqs.txq[txq_id] = queue; ret = iwl_pcie_txq_alloc(trans, queue, queue_size, true); if (ret) { IWL_ERR(trans, "Tx %d queue init failed\n", txq_id); goto error; } } else { queue = trans_pcie->txqs.txq[txq_id]; } ret = iwl_txq_init(trans, queue, queue_size, (txq_id == trans_pcie->txqs.cmd.q_id)); if (ret) { IWL_ERR(trans, "Tx %d queue alloc failed\n", txq_id); goto error; } trans_pcie->txqs.txq[txq_id]->id = txq_id; set_bit(txq_id, trans_pcie->txqs.queue_used); return 0; error: iwl_txq_gen2_tx_free(trans); return ret; } /*************** HOST COMMAND QUEUE FUNCTIONS *****/ /* * iwl_pcie_gen2_enqueue_hcmd - enqueue a uCode command * @priv: device private data point * @cmd: a pointer to the ucode command structure * * The function returns < 0 values to indicate the operation * failed. On success, it returns the index (>= 0) of command in the * command queue. */ int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = trans_pcie->txqs.txq[trans_pcie->txqs.cmd.q_id]; struct iwl_device_cmd *out_cmd; struct iwl_cmd_meta *out_meta; void *dup_buf = NULL; dma_addr_t phys_addr; int i, cmd_pos, idx; u16 copy_size, cmd_size, tb0_size; bool had_nocopy = false; u8 group_id = iwl_cmd_groupid(cmd->id); const u8 *cmddata[IWL_MAX_CMD_TBS_PER_TFD]; u16 cmdlen[IWL_MAX_CMD_TBS_PER_TFD]; struct iwl_tfh_tfd *tfd; unsigned long flags; if (WARN_ON(cmd->flags & CMD_BLOCK_TXQS)) return -EINVAL; copy_size = sizeof(struct iwl_cmd_header_wide); cmd_size = sizeof(struct iwl_cmd_header_wide); for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { cmddata[i] = cmd->data[i]; cmdlen[i] = cmd->len[i]; if (!cmd->len[i]) continue; /* need at least IWL_FIRST_TB_SIZE copied */ if (copy_size < IWL_FIRST_TB_SIZE) { int copy = IWL_FIRST_TB_SIZE - copy_size; if (copy > cmdlen[i]) copy = cmdlen[i]; cmdlen[i] -= copy; cmddata[i] += copy; copy_size += copy; } if (cmd->dataflags[i] & IWL_HCMD_DFL_NOCOPY) { had_nocopy = true; if (WARN_ON(cmd->dataflags[i] & IWL_HCMD_DFL_DUP)) { idx = -EINVAL; goto free_dup_buf; } } else if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) { /* * This is also a chunk that isn't copied * to the static buffer so set had_nocopy. */ had_nocopy = true; /* only allowed once */ if (WARN_ON(dup_buf)) { idx = -EINVAL; goto free_dup_buf; } dup_buf = kmemdup(cmddata[i], cmdlen[i], GFP_ATOMIC); if (!dup_buf) return -ENOMEM; } else { /* NOCOPY must not be followed by normal! */ if (WARN_ON(had_nocopy)) { idx = -EINVAL; goto free_dup_buf; } copy_size += cmdlen[i]; } cmd_size += cmd->len[i]; } /* * If any of the command structures end up being larger than the * TFD_MAX_PAYLOAD_SIZE and they aren't dynamically allocated into * separate TFDs, then we will need to increase the size of the buffers */ if (WARN(copy_size > TFD_MAX_PAYLOAD_SIZE, "Command %s (%#x) is too large (%d bytes)\n", iwl_get_cmd_string(trans, cmd->id), cmd->id, copy_size)) { idx = -EINVAL; goto free_dup_buf; } spin_lock_irqsave(&txq->lock, flags); idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); tfd = iwl_txq_get_tfd(trans, txq, txq->write_ptr); memset(tfd, 0, sizeof(*tfd)); if (iwl_txq_space(trans, txq) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) { spin_unlock_irqrestore(&txq->lock, flags); IWL_ERR(trans, "No space in command queue\n"); iwl_op_mode_cmd_queue_full(trans->op_mode); idx = -ENOSPC; goto free_dup_buf; } out_cmd = txq->entries[idx].cmd; out_meta = &txq->entries[idx].meta; /* re-initialize, this also marks the SG list as unused */ memset(out_meta, 0, sizeof(*out_meta)); if (cmd->flags & CMD_WANT_SKB) out_meta->source = cmd; /* set up the header */ out_cmd->hdr_wide.cmd = iwl_cmd_opcode(cmd->id); out_cmd->hdr_wide.group_id = group_id; out_cmd->hdr_wide.version = iwl_cmd_version(cmd->id); out_cmd->hdr_wide.length = cpu_to_le16(cmd_size - sizeof(struct iwl_cmd_header_wide)); out_cmd->hdr_wide.reserved = 0; out_cmd->hdr_wide.sequence = cpu_to_le16(QUEUE_TO_SEQ(trans_pcie->txqs.cmd.q_id) | INDEX_TO_SEQ(txq->write_ptr)); cmd_pos = sizeof(struct iwl_cmd_header_wide); copy_size = sizeof(struct iwl_cmd_header_wide); /* and copy the data that needs to be copied */ for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { int copy; if (!cmd->len[i]) continue; /* copy everything if not nocopy/dup */ if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY | IWL_HCMD_DFL_DUP))) { copy = cmd->len[i]; memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy); cmd_pos += copy; copy_size += copy; continue; } /* * Otherwise we need at least IWL_FIRST_TB_SIZE copied * in total (for bi-directional DMA), but copy up to what * we can fit into the payload for debug dump purposes. */ copy = min_t(int, TFD_MAX_PAYLOAD_SIZE - cmd_pos, cmd->len[i]); memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy); cmd_pos += copy; /* However, treat copy_size the proper way, we need it below */ if (copy_size < IWL_FIRST_TB_SIZE) { copy = IWL_FIRST_TB_SIZE - copy_size; if (copy > cmd->len[i]) copy = cmd->len[i]; copy_size += copy; } } IWL_DEBUG_HC(trans, "Sending command %s (%.2x.%.2x), seq: 0x%04X, %d bytes at %d[%d]:%d\n", iwl_get_cmd_string(trans, cmd->id), group_id, out_cmd->hdr.cmd, le16_to_cpu(out_cmd->hdr.sequence), cmd_size, txq->write_ptr, idx, trans_pcie->txqs.cmd.q_id); /* start the TFD with the minimum copy bytes */ tb0_size = min_t(int, copy_size, IWL_FIRST_TB_SIZE); memcpy(&txq->first_tb_bufs[idx], out_cmd, tb0_size); iwl_txq_gen2_set_tb(trans, tfd, iwl_txq_get_first_tb_dma(txq, idx), tb0_size); /* map first command fragment, if any remains */ if (copy_size > tb0_size) { phys_addr = dma_map_single(trans->dev, (u8 *)out_cmd + tb0_size, copy_size - tb0_size, DMA_TO_DEVICE); if (dma_mapping_error(trans->dev, phys_addr)) { idx = -ENOMEM; iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd); goto out; } iwl_txq_gen2_set_tb(trans, tfd, phys_addr, copy_size - tb0_size); } /* map the remaining (adjusted) nocopy/dup fragments */ for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { void *data = (void *)(uintptr_t)cmddata[i]; if (!cmdlen[i]) continue; if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY | IWL_HCMD_DFL_DUP))) continue; if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) data = dup_buf; phys_addr = dma_map_single(trans->dev, data, cmdlen[i], DMA_TO_DEVICE); if (dma_mapping_error(trans->dev, phys_addr)) { idx = -ENOMEM; iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd); goto out; } iwl_txq_gen2_set_tb(trans, tfd, phys_addr, cmdlen[i]); } BUILD_BUG_ON(IWL_TFH_NUM_TBS > sizeof(out_meta->tbs) * BITS_PER_BYTE); out_meta->flags = cmd->flags; if (WARN_ON_ONCE(txq->entries[idx].free_buf)) kfree_sensitive(txq->entries[idx].free_buf); txq->entries[idx].free_buf = dup_buf; trace_iwlwifi_dev_hcmd(trans->dev, cmd, cmd_size, &out_cmd->hdr_wide); /* start timer if queue currently empty */ if (txq->read_ptr == txq->write_ptr && txq->wd_timeout) mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); spin_lock(&trans_pcie->reg_lock); /* Increment and update queue's write index */ txq->write_ptr = iwl_txq_inc_wrap(trans, txq->write_ptr); iwl_txq_inc_wr_ptr(trans, txq); spin_unlock(&trans_pcie->reg_lock); out: spin_unlock_irqrestore(&txq->lock, flags); free_dup_buf: if (idx < 0) kfree(dup_buf); return idx; }