// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_sched_job.h" #include #include #include #include "xe_device.h" #include "xe_exec_queue.h" #include "xe_gt.h" #include "xe_hw_engine_types.h" #include "xe_hw_fence.h" #include "xe_lrc.h" #include "xe_macros.h" #include "xe_pm.h" #include "xe_sync_types.h" #include "xe_trace.h" #include "xe_vm.h" static struct kmem_cache *xe_sched_job_slab; static struct kmem_cache *xe_sched_job_parallel_slab; int __init xe_sched_job_module_init(void) { xe_sched_job_slab = kmem_cache_create("xe_sched_job", sizeof(struct xe_sched_job) + sizeof(struct xe_job_ptrs), 0, SLAB_HWCACHE_ALIGN, NULL); if (!xe_sched_job_slab) return -ENOMEM; xe_sched_job_parallel_slab = kmem_cache_create("xe_sched_job_parallel", sizeof(struct xe_sched_job) + sizeof(struct xe_job_ptrs) * XE_HW_ENGINE_MAX_INSTANCE, 0, SLAB_HWCACHE_ALIGN, NULL); if (!xe_sched_job_parallel_slab) { kmem_cache_destroy(xe_sched_job_slab); return -ENOMEM; } return 0; } void xe_sched_job_module_exit(void) { kmem_cache_destroy(xe_sched_job_slab); kmem_cache_destroy(xe_sched_job_parallel_slab); } static struct xe_sched_job *job_alloc(bool parallel) { return kmem_cache_zalloc(parallel ? xe_sched_job_parallel_slab : xe_sched_job_slab, GFP_KERNEL); } bool xe_sched_job_is_migration(struct xe_exec_queue *q) { return q->vm && (q->vm->flags & XE_VM_FLAG_MIGRATION); } static void job_free(struct xe_sched_job *job) { struct xe_exec_queue *q = job->q; bool is_migration = xe_sched_job_is_migration(q); kmem_cache_free(xe_exec_queue_is_parallel(job->q) || is_migration ? xe_sched_job_parallel_slab : xe_sched_job_slab, job); } static struct xe_device *job_to_xe(struct xe_sched_job *job) { return gt_to_xe(job->q->gt); } /* Free unused pre-allocated fences */ static void xe_sched_job_free_fences(struct xe_sched_job *job) { int i; for (i = 0; i < job->q->width; ++i) { struct xe_job_ptrs *ptrs = &job->ptrs[i]; if (ptrs->lrc_fence) xe_lrc_free_seqno_fence(ptrs->lrc_fence); if (ptrs->chain_fence) dma_fence_chain_free(ptrs->chain_fence); } } struct xe_sched_job *xe_sched_job_create(struct xe_exec_queue *q, u64 *batch_addr) { bool is_migration = xe_sched_job_is_migration(q); struct xe_sched_job *job; int err; int i; u32 width; /* only a kernel context can submit a vm-less job */ XE_WARN_ON(!q->vm && !(q->flags & EXEC_QUEUE_FLAG_KERNEL)); job = job_alloc(xe_exec_queue_is_parallel(q) || is_migration); if (!job) return ERR_PTR(-ENOMEM); job->q = q; kref_init(&job->refcount); xe_exec_queue_get(job->q); err = drm_sched_job_init(&job->drm, q->entity, 1, NULL); if (err) goto err_free; for (i = 0; i < q->width; ++i) { struct dma_fence *fence = xe_lrc_alloc_seqno_fence(); struct dma_fence_chain *chain; if (IS_ERR(fence)) { err = PTR_ERR(fence); goto err_sched_job; } job->ptrs[i].lrc_fence = fence; if (i + 1 == q->width) continue; chain = dma_fence_chain_alloc(); if (!chain) { err = -ENOMEM; goto err_sched_job; } job->ptrs[i].chain_fence = chain; } width = q->width; if (is_migration) width = 2; for (i = 0; i < width; ++i) job->ptrs[i].batch_addr = batch_addr[i]; xe_pm_runtime_get_noresume(job_to_xe(job)); trace_xe_sched_job_create(job); return job; err_sched_job: xe_sched_job_free_fences(job); drm_sched_job_cleanup(&job->drm); err_free: xe_exec_queue_put(q); job_free(job); return ERR_PTR(err); } /** * xe_sched_job_destroy - Destroy XE schedule job * @ref: reference to XE schedule job * * Called when ref == 0, drop a reference to job's xe_engine + fence, cleanup * base DRM schedule job, and free memory for XE schedule job. */ void xe_sched_job_destroy(struct kref *ref) { struct xe_sched_job *job = container_of(ref, struct xe_sched_job, refcount); struct xe_device *xe = job_to_xe(job); struct xe_exec_queue *q = job->q; xe_sched_job_free_fences(job); dma_fence_put(job->fence); drm_sched_job_cleanup(&job->drm); job_free(job); xe_exec_queue_put(q); xe_pm_runtime_put(xe); } /* Set the error status under the fence to avoid racing with signaling */ static bool xe_fence_set_error(struct dma_fence *fence, int error) { unsigned long irq_flags; bool signaled; spin_lock_irqsave(fence->lock, irq_flags); signaled = test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags); if (!signaled) dma_fence_set_error(fence, error); spin_unlock_irqrestore(fence->lock, irq_flags); return signaled; } void xe_sched_job_set_error(struct xe_sched_job *job, int error) { if (xe_fence_set_error(job->fence, error)) return; if (dma_fence_is_chain(job->fence)) { struct dma_fence *iter; dma_fence_chain_for_each(iter, job->fence) xe_fence_set_error(dma_fence_chain_contained(iter), error); } trace_xe_sched_job_set_error(job); dma_fence_enable_sw_signaling(job->fence); xe_hw_fence_irq_run(job->q->fence_irq); } bool xe_sched_job_started(struct xe_sched_job *job) { struct xe_lrc *lrc = job->q->lrc[0]; return !__dma_fence_is_later(xe_sched_job_lrc_seqno(job), xe_lrc_start_seqno(lrc), dma_fence_chain_contained(job->fence)->ops); } bool xe_sched_job_completed(struct xe_sched_job *job) { struct xe_lrc *lrc = job->q->lrc[0]; /* * Can safely check just LRC[0] seqno as that is last seqno written when * parallel handshake is done. */ return !__dma_fence_is_later(xe_sched_job_lrc_seqno(job), xe_lrc_seqno(lrc), dma_fence_chain_contained(job->fence)->ops); } void xe_sched_job_arm(struct xe_sched_job *job) { struct xe_exec_queue *q = job->q; struct dma_fence *fence, *prev; struct xe_vm *vm = q->vm; u64 seqno = 0; int i; /* Migration and kernel engines have their own locking */ if (IS_ENABLED(CONFIG_LOCKDEP) && !(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) { lockdep_assert_held(&q->vm->lock); if (!xe_vm_in_lr_mode(q->vm)) xe_vm_assert_held(q->vm); } if (vm && !xe_sched_job_is_migration(q) && !xe_vm_in_lr_mode(vm) && (vm->batch_invalidate_tlb || vm->tlb_flush_seqno != q->tlb_flush_seqno)) { xe_vm_assert_held(vm); q->tlb_flush_seqno = vm->tlb_flush_seqno; job->ring_ops_flush_tlb = true; } /* Arm the pre-allocated fences */ for (i = 0; i < q->width; prev = fence, ++i) { struct dma_fence_chain *chain; fence = job->ptrs[i].lrc_fence; xe_lrc_init_seqno_fence(q->lrc[i], fence); job->ptrs[i].lrc_fence = NULL; if (!i) { job->lrc_seqno = fence->seqno; continue; } else { xe_assert(gt_to_xe(q->gt), job->lrc_seqno == fence->seqno); } chain = job->ptrs[i - 1].chain_fence; dma_fence_chain_init(chain, prev, fence, seqno++); job->ptrs[i - 1].chain_fence = NULL; fence = &chain->base; } job->fence = fence; drm_sched_job_arm(&job->drm); } void xe_sched_job_push(struct xe_sched_job *job) { xe_sched_job_get(job); trace_xe_sched_job_exec(job); drm_sched_entity_push_job(&job->drm); xe_sched_job_put(job); } /** * xe_sched_job_last_fence_add_dep - Add last fence dependency to job * @job:job to add the last fence dependency to * @vm: virtual memory job belongs to * * Returns: * 0 on success, or an error on failing to expand the array. */ int xe_sched_job_last_fence_add_dep(struct xe_sched_job *job, struct xe_vm *vm) { struct dma_fence *fence; fence = xe_exec_queue_last_fence_get(job->q, vm); return drm_sched_job_add_dependency(&job->drm, fence); } /** * xe_sched_job_init_user_fence - Initialize user_fence for the job * @job: job whose user_fence needs an init * @sync: sync to be use to init user_fence */ void xe_sched_job_init_user_fence(struct xe_sched_job *job, struct xe_sync_entry *sync) { if (sync->type != DRM_XE_SYNC_TYPE_USER_FENCE) return; job->user_fence.used = true; job->user_fence.addr = sync->addr; job->user_fence.value = sync->timeline_value; } struct xe_sched_job_snapshot * xe_sched_job_snapshot_capture(struct xe_sched_job *job) { struct xe_exec_queue *q = job->q; struct xe_device *xe = q->gt->tile->xe; struct xe_sched_job_snapshot *snapshot; size_t len = sizeof(*snapshot) + (sizeof(u64) * q->width); u16 i; snapshot = kzalloc(len, GFP_ATOMIC); if (!snapshot) return NULL; snapshot->batch_addr_len = q->width; for (i = 0; i < q->width; i++) snapshot->batch_addr[i] = xe_device_uncanonicalize_addr(xe, job->ptrs[i].batch_addr); return snapshot; } void xe_sched_job_snapshot_free(struct xe_sched_job_snapshot *snapshot) { kfree(snapshot); } void xe_sched_job_snapshot_print(struct xe_sched_job_snapshot *snapshot, struct drm_printer *p) { u16 i; if (!snapshot) return; for (i = 0; i < snapshot->batch_addr_len; i++) drm_printf(p, "batch_addr[%u]: 0x%016llx\n", i, snapshot->batch_addr[i]); } int xe_sched_job_add_deps(struct xe_sched_job *job, struct dma_resv *resv, enum dma_resv_usage usage) { return drm_sched_job_add_resv_dependencies(&job->drm, resv, usage); }