// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "xe_gt_topology.h" #include #include "regs/xe_gt_regs.h" #include "xe_assert.h" #include "xe_gt.h" #include "xe_mmio.h" static void load_dss_mask(struct xe_gt *gt, xe_dss_mask_t mask, int numregs, ...) { va_list argp; u32 fuse_val[XE_MAX_DSS_FUSE_REGS] = {}; int i; if (drm_WARN_ON(>_to_xe(gt)->drm, numregs > XE_MAX_DSS_FUSE_REGS)) numregs = XE_MAX_DSS_FUSE_REGS; va_start(argp, numregs); for (i = 0; i < numregs; i++) fuse_val[i] = xe_mmio_read32(gt, va_arg(argp, struct xe_reg)); va_end(argp); bitmap_from_arr32(mask, fuse_val, numregs * 32); } static void load_eu_mask(struct xe_gt *gt, xe_eu_mask_t mask) { struct xe_device *xe = gt_to_xe(gt); u32 reg_val = xe_mmio_read32(gt, XELP_EU_ENABLE); u32 val = 0; int i; BUILD_BUG_ON(XE_MAX_EU_FUSE_REGS > 1); /* * Pre-Xe_HP platforms inverted the bit meaning (disable instead * of enable). */ if (GRAPHICS_VERx100(xe) < 1250) reg_val = ~reg_val & XELP_EU_MASK; /* On PVC, one bit = one EU */ if (GRAPHICS_VERx100(xe) == 1260) { val = reg_val; } else { /* All other platforms, one bit = 2 EU */ for (i = 0; i < fls(reg_val); i++) if (reg_val & BIT(i)) val |= 0x3 << 2 * i; } bitmap_from_arr32(mask, &val, XE_MAX_EU_FUSE_BITS); } /** * gen_l3_mask_from_pattern - Replicate a bit pattern according to a mask * * It is used to compute the L3 bank masks in a generic format on * various platforms where the internal representation of L3 node * and masks from registers are different. * * @xe: device * @dst: destination * @pattern: pattern to replicate * @patternbits: size of the pattern, in bits * @mask: mask describing where to replicate the pattern * * Example 1: * ---------- * @pattern = 0b1111 * └┬─┘ * @patternbits = 4 (bits) * @mask = 0b0101 * ││││ * │││└────────────────── 0b1111 (=1×0b1111) * ││└──────────── 0b0000 │ (=0×0b1111) * │└────── 0b1111 │ │ (=1×0b1111) * └ 0b0000 │ │ │ (=0×0b1111) * │ │ │ │ * @dst = 0b0000 0b1111 0b0000 0b1111 * * Example 2: * ---------- * @pattern = 0b11111111 * └┬─────┘ * @patternbits = 8 (bits) * @mask = 0b10 * ││ * ││ * ││ * │└────────── 0b00000000 (=0×0b11111111) * └ 0b11111111 │ (=1×0b11111111) * │ │ * @dst = 0b11111111 0b00000000 */ static void gen_l3_mask_from_pattern(struct xe_device *xe, xe_l3_bank_mask_t dst, xe_l3_bank_mask_t pattern, int patternbits, unsigned long mask) { unsigned long bit; xe_assert(xe, find_last_bit(pattern, XE_MAX_L3_BANK_MASK_BITS) < patternbits || bitmap_empty(pattern, XE_MAX_L3_BANK_MASK_BITS)); xe_assert(xe, !mask || patternbits * (__fls(mask) + 1) <= XE_MAX_L3_BANK_MASK_BITS); for_each_set_bit(bit, &mask, 32) { xe_l3_bank_mask_t shifted_pattern = {}; bitmap_shift_left(shifted_pattern, pattern, bit * patternbits, XE_MAX_L3_BANK_MASK_BITS); bitmap_or(dst, dst, shifted_pattern, XE_MAX_L3_BANK_MASK_BITS); } } static void load_l3_bank_mask(struct xe_gt *gt, xe_l3_bank_mask_t l3_bank_mask) { struct xe_device *xe = gt_to_xe(gt); u32 fuse3 = xe_mmio_read32(gt, MIRROR_FUSE3); if (GRAPHICS_VER(xe) >= 20) { xe_l3_bank_mask_t per_node = {}; u32 meml3_en = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, fuse3); u32 bank_val = REG_FIELD_GET(XE2_GT_L3_MODE_MASK, fuse3); bitmap_from_arr32(per_node, &bank_val, 32); gen_l3_mask_from_pattern(xe, l3_bank_mask, per_node, 4, meml3_en); } else if (GRAPHICS_VERx100(xe) >= 1270) { xe_l3_bank_mask_t per_node = {}; xe_l3_bank_mask_t per_mask_bit = {}; u32 meml3_en = REG_FIELD_GET(MEML3_EN_MASK, fuse3); u32 fuse4 = xe_mmio_read32(gt, XEHP_FUSE4); u32 bank_val = REG_FIELD_GET(GT_L3_EXC_MASK, fuse4); bitmap_set_value8(per_mask_bit, 0x3, 0); gen_l3_mask_from_pattern(xe, per_node, per_mask_bit, 2, bank_val); gen_l3_mask_from_pattern(xe, l3_bank_mask, per_node, 4, meml3_en); } else if (xe->info.platform == XE_PVC) { xe_l3_bank_mask_t per_node = {}; xe_l3_bank_mask_t per_mask_bit = {}; u32 meml3_en = REG_FIELD_GET(MEML3_EN_MASK, fuse3); u32 bank_val = REG_FIELD_GET(XEHPC_GT_L3_MODE_MASK, fuse3); bitmap_set_value8(per_mask_bit, 0xf, 0); gen_l3_mask_from_pattern(xe, per_node, per_mask_bit, 4, bank_val); gen_l3_mask_from_pattern(xe, l3_bank_mask, per_node, 16, meml3_en); } else if (xe->info.platform == XE_DG2) { xe_l3_bank_mask_t per_node = {}; u32 mask = REG_FIELD_GET(MEML3_EN_MASK, fuse3); bitmap_set_value8(per_node, 0xff, 0); gen_l3_mask_from_pattern(xe, l3_bank_mask, per_node, 8, mask); } else { /* 1:1 register bit to mask bit (inverted register bits) */ u32 mask = REG_FIELD_GET(XELP_GT_L3_MODE_MASK, ~fuse3); bitmap_from_arr32(l3_bank_mask, &mask, 32); } } static void get_num_dss_regs(struct xe_device *xe, int *geometry_regs, int *compute_regs) { if (GRAPHICS_VER(xe) > 20) { *geometry_regs = 3; *compute_regs = 3; } else if (GRAPHICS_VERx100(xe) == 1260) { *geometry_regs = 0; *compute_regs = 2; } else if (GRAPHICS_VERx100(xe) >= 1250) { *geometry_regs = 1; *compute_regs = 1; } else { *geometry_regs = 1; *compute_regs = 0; } } void xe_gt_topology_init(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); struct drm_printer p; int num_geometry_regs, num_compute_regs; get_num_dss_regs(xe, &num_geometry_regs, &num_compute_regs); /* * Register counts returned shouldn't exceed the number of registers * passed as parameters below. */ drm_WARN_ON(&xe->drm, num_geometry_regs > 3); drm_WARN_ON(&xe->drm, num_compute_regs > 3); load_dss_mask(gt, gt->fuse_topo.g_dss_mask, num_geometry_regs, XELP_GT_GEOMETRY_DSS_ENABLE, XE2_GT_GEOMETRY_DSS_1, XE2_GT_GEOMETRY_DSS_2); load_dss_mask(gt, gt->fuse_topo.c_dss_mask, num_compute_regs, XEHP_GT_COMPUTE_DSS_ENABLE, XEHPC_GT_COMPUTE_DSS_ENABLE_EXT, XE2_GT_COMPUTE_DSS_2); load_eu_mask(gt, gt->fuse_topo.eu_mask_per_dss); load_l3_bank_mask(gt, gt->fuse_topo.l3_bank_mask); p = drm_dbg_printer(>_to_xe(gt)->drm, DRM_UT_DRIVER, "GT topology"); xe_gt_topology_dump(gt, &p); } void xe_gt_topology_dump(struct xe_gt *gt, struct drm_printer *p) { drm_printf(p, "dss mask (geometry): %*pb\n", XE_MAX_DSS_FUSE_BITS, gt->fuse_topo.g_dss_mask); drm_printf(p, "dss mask (compute): %*pb\n", XE_MAX_DSS_FUSE_BITS, gt->fuse_topo.c_dss_mask); drm_printf(p, "EU mask per DSS: %*pb\n", XE_MAX_EU_FUSE_BITS, gt->fuse_topo.eu_mask_per_dss); drm_printf(p, "L3 bank mask: %*pb\n", XE_MAX_L3_BANK_MASK_BITS, gt->fuse_topo.l3_bank_mask); } /* * Used to obtain the index of the first DSS. Can start searching from the * beginning of a specific dss group (e.g., gslice, cslice, etc.) if * groupsize and groupnum are non-zero. */ unsigned int xe_dss_mask_group_ffs(const xe_dss_mask_t mask, int groupsize, int groupnum) { return find_next_bit(mask, XE_MAX_DSS_FUSE_BITS, groupnum * groupsize); } bool xe_dss_mask_empty(const xe_dss_mask_t mask) { return bitmap_empty(mask, XE_MAX_DSS_FUSE_BITS); } /** * xe_gt_topology_has_dss_in_quadrant - check fusing of DSS in GT quadrant * @gt: GT to check * @quad: Which quadrant of the DSS space to check * * Since Xe_HP platforms can have up to four CCS engines, those engines * are each logically associated with a quarter of the possible DSS. If there * are no DSS present in one of the four quadrants of the DSS space, the * corresponding CCS engine is also not available for use. * * Returns false if all DSS in a quadrant of the GT are fused off, else true. */ bool xe_gt_topology_has_dss_in_quadrant(struct xe_gt *gt, int quad) { struct xe_device *xe = gt_to_xe(gt); xe_dss_mask_t all_dss; int g_dss_regs, c_dss_regs, dss_per_quad, quad_first; bitmap_or(all_dss, gt->fuse_topo.g_dss_mask, gt->fuse_topo.c_dss_mask, XE_MAX_DSS_FUSE_BITS); get_num_dss_regs(xe, &g_dss_regs, &c_dss_regs); dss_per_quad = 32 * max(g_dss_regs, c_dss_regs) / 4; quad_first = xe_dss_mask_group_ffs(all_dss, dss_per_quad, quad); return quad_first < (quad + 1) * dss_per_quad; } bool xe_gt_has_geometry_dss(struct xe_gt *gt, unsigned int dss) { return test_bit(dss, gt->fuse_topo.g_dss_mask); } bool xe_gt_has_compute_dss(struct xe_gt *gt, unsigned int dss) { return test_bit(dss, gt->fuse_topo.c_dss_mask); }