/* * Copyright 2023 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "reg_helper.h" #include "dc.h" #include "dcn401_mpc.h" #include "dcn10/dcn10_cm_common.h" #include "basics/conversion.h" #include "mpc.h" #define REG(reg)\ mpc401->mpc_regs->reg #define CTX \ mpc401->base.ctx #undef FN #define FN(reg_name, field_name) \ mpc401->mpc_shift->field_name, mpc401->mpc_mask->field_name static void mpc401_update_3dlut_fast_load_select(struct mpc *mpc, int mpcc_id, int hubp_idx) { struct dcn401_mpc *mpc401 = TO_DCN401_MPC(mpc); REG_SET(MPCC_MCM_3DLUT_FAST_LOAD_SELECT[mpcc_id], 0, MPCC_MCM_3DLUT_FL_SEL, hubp_idx); } static void mpc401_get_3dlut_fast_load_status(struct mpc *mpc, int mpcc_id, uint32_t *done, uint32_t *soft_underflow, uint32_t *hard_underflow) { struct dcn401_mpc *mpc401 = TO_DCN401_MPC(mpc); REG_GET_3(MPCC_MCM_3DLUT_FAST_LOAD_STATUS[mpcc_id], MPCC_MCM_3DLUT_FL_DONE, done, MPCC_MCM_3DLUT_FL_SOFT_UNDERFLOW, soft_underflow, MPCC_MCM_3DLUT_FL_HARD_UNDERFLOW, hard_underflow); } void mpc401_set_movable_cm_location(struct mpc *mpc, enum mpcc_movable_cm_location location, int mpcc_id) { struct dcn401_mpc *mpc401 = TO_DCN401_MPC(mpc); switch (location) { case MPCC_MOVABLE_CM_LOCATION_BEFORE: REG_UPDATE(MPCC_MOVABLE_CM_LOCATION_CONTROL[mpcc_id], MPCC_MOVABLE_CM_LOCATION_CNTL, 0); break; case MPCC_MOVABLE_CM_LOCATION_AFTER: REG_UPDATE(MPCC_MOVABLE_CM_LOCATION_CONTROL[mpcc_id], MPCC_MOVABLE_CM_LOCATION_CNTL, 1); break; } } static enum dc_lut_mode get3dlut_config( struct mpc *mpc, bool *is_17x17x17, bool *is_12bits_color_channel, int mpcc_id) { uint32_t i_mode, i_enable_10bits, lut_size; enum dc_lut_mode mode; struct dcn401_mpc *mpc401 = TO_DCN401_MPC(mpc); REG_GET(MPCC_MCM_3DLUT_MODE[mpcc_id], MPCC_MCM_3DLUT_MODE_CURRENT, &i_mode); REG_GET(MPCC_MCM_3DLUT_READ_WRITE_CONTROL[mpcc_id], MPCC_MCM_3DLUT_30BIT_EN, &i_enable_10bits); switch (i_mode) { case 0: mode = LUT_BYPASS; break; case 1: mode = LUT_RAM_A; break; case 2: mode = LUT_RAM_B; break; default: mode = LUT_BYPASS; break; } if (i_enable_10bits > 0) *is_12bits_color_channel = false; else *is_12bits_color_channel = true; REG_GET(MPCC_MCM_3DLUT_MODE[mpcc_id], MPCC_MCM_3DLUT_SIZE, &lut_size); if (lut_size == 0) *is_17x17x17 = true; else *is_17x17x17 = false; return mode; } void mpc401_populate_lut(struct mpc *mpc, const enum MCM_LUT_ID id, const union mcm_lut_params params, bool lut_bank_a, int mpcc_id) { const enum dc_lut_mode next_mode = lut_bank_a ? LUT_RAM_A : LUT_RAM_B; const struct pwl_params *lut1d = params.pwl; const struct pwl_params *lut_shaper = params.pwl; bool is_17x17x17; bool is_12bits_color_channel; const struct dc_rgb *lut0; const struct dc_rgb *lut1; const struct dc_rgb *lut2; const struct dc_rgb *lut3; int lut_size0; int lut_size; const struct tetrahedral_params *lut3d = params.lut3d; switch (id) { case MCM_LUT_1DLUT: if (lut1d == NULL) return; mpc32_power_on_blnd_lut(mpc, mpcc_id, true); mpc32_configure_post1dlut(mpc, mpcc_id, next_mode == LUT_RAM_A); if (next_mode == LUT_RAM_A) mpc32_program_post1dluta_settings(mpc, mpcc_id, lut1d); else mpc32_program_post1dlutb_settings(mpc, mpcc_id, lut1d); mpc32_program_post1dlut_pwl( mpc, mpcc_id, lut1d->rgb_resulted, lut1d->hw_points_num); break; case MCM_LUT_SHAPER: if (lut_shaper == NULL) return; if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) mpc32_power_on_shaper_3dlut(mpc, mpcc_id, true); mpc32_configure_shaper_lut(mpc, next_mode == LUT_RAM_A, mpcc_id); if (next_mode == LUT_RAM_A) mpc32_program_shaper_luta_settings(mpc, lut_shaper, mpcc_id); else mpc32_program_shaper_lutb_settings(mpc, lut_shaper, mpcc_id); mpc32_program_shaper_lut( mpc, lut_shaper->rgb_resulted, lut_shaper->hw_points_num, mpcc_id); mpc32_power_on_shaper_3dlut(mpc, mpcc_id, false); break; case MCM_LUT_3DLUT: if (lut3d == NULL) return; mpc32_power_on_shaper_3dlut(mpc, mpcc_id, true); get3dlut_config(mpc, &is_17x17x17, &is_12bits_color_channel, mpcc_id); is_17x17x17 = !lut3d->use_tetrahedral_9; is_12bits_color_channel = lut3d->use_12bits; if (is_17x17x17) { lut0 = lut3d->tetrahedral_17.lut0; lut1 = lut3d->tetrahedral_17.lut1; lut2 = lut3d->tetrahedral_17.lut2; lut3 = lut3d->tetrahedral_17.lut3; lut_size0 = sizeof(lut3d->tetrahedral_17.lut0)/ sizeof(lut3d->tetrahedral_17.lut0[0]); lut_size = sizeof(lut3d->tetrahedral_17.lut1)/ sizeof(lut3d->tetrahedral_17.lut1[0]); } else { lut0 = lut3d->tetrahedral_9.lut0; lut1 = lut3d->tetrahedral_9.lut1; lut2 = lut3d->tetrahedral_9.lut2; lut3 = lut3d->tetrahedral_9.lut3; lut_size0 = sizeof(lut3d->tetrahedral_9.lut0)/ sizeof(lut3d->tetrahedral_9.lut0[0]); lut_size = sizeof(lut3d->tetrahedral_9.lut1)/ sizeof(lut3d->tetrahedral_9.lut1[0]); } mpc32_select_3dlut_ram(mpc, next_mode, is_12bits_color_channel, mpcc_id); mpc32_select_3dlut_ram_mask(mpc, 0x1, mpcc_id); if (is_12bits_color_channel) mpc32_set3dlut_ram12(mpc, lut0, lut_size0, mpcc_id); else mpc32_set3dlut_ram10(mpc, lut0, lut_size0, mpcc_id); mpc32_select_3dlut_ram_mask(mpc, 0x2, mpcc_id); if (is_12bits_color_channel) mpc32_set3dlut_ram12(mpc, lut1, lut_size, mpcc_id); else mpc32_set3dlut_ram10(mpc, lut1, lut_size, mpcc_id); mpc32_select_3dlut_ram_mask(mpc, 0x4, mpcc_id); if (is_12bits_color_channel) mpc32_set3dlut_ram12(mpc, lut2, lut_size, mpcc_id); else mpc32_set3dlut_ram10(mpc, lut2, lut_size, mpcc_id); mpc32_select_3dlut_ram_mask(mpc, 0x8, mpcc_id); if (is_12bits_color_channel) mpc32_set3dlut_ram12(mpc, lut3, lut_size, mpcc_id); else mpc32_set3dlut_ram10(mpc, lut3, lut_size, mpcc_id); if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) mpc32_power_on_shaper_3dlut(mpc, mpcc_id, false); break; } } void mpc401_program_lut_mode( struct mpc *mpc, const enum MCM_LUT_ID id, const enum MCM_LUT_XABLE xable, bool lut_bank_a, int mpcc_id) { struct dcn401_mpc *mpc401 = TO_DCN401_MPC(mpc); switch (id) { case MCM_LUT_3DLUT: switch (xable) { case MCM_LUT_DISABLE: REG_UPDATE(MPCC_MCM_3DLUT_MODE[mpcc_id], MPCC_MCM_3DLUT_MODE, 0); break; case MCM_LUT_ENABLE: REG_UPDATE(MPCC_MCM_3DLUT_MODE[mpcc_id], MPCC_MCM_3DLUT_MODE, lut_bank_a ? 1 : 2); break; } break; case MCM_LUT_SHAPER: switch (xable) { case MCM_LUT_DISABLE: REG_UPDATE(MPCC_MCM_SHAPER_CONTROL[mpcc_id], MPCC_MCM_SHAPER_LUT_MODE, 0); break; case MCM_LUT_ENABLE: REG_UPDATE(MPCC_MCM_SHAPER_CONTROL[mpcc_id], MPCC_MCM_SHAPER_LUT_MODE, lut_bank_a ? 1 : 2); break; } break; case MCM_LUT_1DLUT: switch (xable) { case MCM_LUT_DISABLE: REG_UPDATE(MPCC_MCM_1DLUT_CONTROL[mpcc_id], MPCC_MCM_1DLUT_MODE, 0); break; case MCM_LUT_ENABLE: REG_UPDATE(MPCC_MCM_1DLUT_CONTROL[mpcc_id], MPCC_MCM_1DLUT_MODE, 2); break; } REG_UPDATE(MPCC_MCM_1DLUT_CONTROL[mpcc_id], MPCC_MCM_1DLUT_SELECT, lut_bank_a ? 0 : 1); break; } } void mpc401_program_lut_read_write_control(struct mpc *mpc, const enum MCM_LUT_ID id, bool lut_bank_a, int mpcc_id) { struct dcn401_mpc *mpc401 = TO_DCN401_MPC(mpc); switch (id) { case MCM_LUT_3DLUT: mpc32_select_3dlut_ram_mask(mpc, 0xf, mpcc_id); REG_UPDATE(MPCC_MCM_3DLUT_READ_WRITE_CONTROL[mpcc_id], MPCC_MCM_3DLUT_RAM_SEL, lut_bank_a ? 0 : 1); break; case MCM_LUT_SHAPER: mpc32_configure_shaper_lut(mpc, lut_bank_a, mpcc_id); break; case MCM_LUT_1DLUT: mpc32_configure_post1dlut(mpc, lut_bank_a, mpcc_id); break; } } void mpc401_program_3dlut_size(struct mpc *mpc, bool is_17x17x17, int mpcc_id) { struct dcn401_mpc *mpc401 = TO_DCN401_MPC(mpc); REG_UPDATE(MPCC_MCM_3DLUT_MODE[mpcc_id], MPCC_MCM_3DLUT_SIZE, is_17x17x17 ? 0 : 1); } static void program_gamut_remap( struct mpc *mpc, unsigned int mpcc_id, const uint16_t *regval, enum mpcc_gamut_remap_id gamut_remap_block_id, enum mpcc_gamut_remap_mode_select mode_select) { struct color_matrices_reg gamut_regs; struct dcn401_mpc *mpc401 = TO_DCN401_MPC(mpc); switch (gamut_remap_block_id) { case MPCC_OGAM_GAMUT_REMAP: if (regval == NULL || mode_select == MPCC_GAMUT_REMAP_MODE_SELECT_0) { REG_SET(MPCC_GAMUT_REMAP_MODE[mpcc_id], 0, MPCC_GAMUT_REMAP_MODE, mode_select); return; } gamut_regs.shifts.csc_c11 = mpc401->mpc_shift->MPCC_GAMUT_REMAP_C11_A; gamut_regs.masks.csc_c11 = mpc401->mpc_mask->MPCC_GAMUT_REMAP_C11_A; gamut_regs.shifts.csc_c12 = mpc401->mpc_shift->MPCC_GAMUT_REMAP_C12_A; gamut_regs.masks.csc_c12 = mpc401->mpc_mask->MPCC_GAMUT_REMAP_C12_A; switch (mode_select) { case MPCC_GAMUT_REMAP_MODE_SELECT_1: gamut_regs.csc_c11_c12 = REG(MPC_GAMUT_REMAP_C11_C12_A[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_GAMUT_REMAP_C33_C34_A[mpcc_id]); break; case MPCC_GAMUT_REMAP_MODE_SELECT_2: gamut_regs.csc_c11_c12 = REG(MPC_GAMUT_REMAP_C11_C12_B[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_GAMUT_REMAP_C33_C34_B[mpcc_id]); break; default: break; } cm_helper_program_color_matrices( mpc->ctx, regval, &gamut_regs); //select coefficient set to use, set A (MODE_1) or set B (MODE_2) REG_SET(MPCC_GAMUT_REMAP_MODE[mpcc_id], 0, MPCC_GAMUT_REMAP_MODE, mode_select); break; case MPCC_MCM_FIRST_GAMUT_REMAP: if (regval == NULL || mode_select == MPCC_GAMUT_REMAP_MODE_SELECT_0) { REG_SET(MPCC_MCM_FIRST_GAMUT_REMAP_MODE[mpcc_id], 0, MPCC_MCM_FIRST_GAMUT_REMAP_MODE, mode_select); return; } gamut_regs.shifts.csc_c11 = mpc401->mpc_shift->MPCC_MCM_FIRST_GAMUT_REMAP_C11_A; gamut_regs.masks.csc_c11 = mpc401->mpc_mask->MPCC_MCM_FIRST_GAMUT_REMAP_C11_A; gamut_regs.shifts.csc_c12 = mpc401->mpc_shift->MPCC_MCM_FIRST_GAMUT_REMAP_C12_A; gamut_regs.masks.csc_c12 = mpc401->mpc_mask->MPCC_MCM_FIRST_GAMUT_REMAP_C12_A; switch (mode_select) { case MPCC_GAMUT_REMAP_MODE_SELECT_1: gamut_regs.csc_c11_c12 = REG(MPC_MCM_FIRST_GAMUT_REMAP_C11_C12_A[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_MCM_FIRST_GAMUT_REMAP_C33_C34_A[mpcc_id]); break; case MPCC_GAMUT_REMAP_MODE_SELECT_2: gamut_regs.csc_c11_c12 = REG(MPC_MCM_FIRST_GAMUT_REMAP_C11_C12_B[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_MCM_FIRST_GAMUT_REMAP_C33_C34_B[mpcc_id]); break; default: break; } cm_helper_program_color_matrices( mpc->ctx, regval, &gamut_regs); //select coefficient set to use, set A (MODE_1) or set B (MODE_2) REG_SET(MPCC_MCM_FIRST_GAMUT_REMAP_MODE[mpcc_id], 0, MPCC_MCM_FIRST_GAMUT_REMAP_MODE, mode_select); break; case MPCC_MCM_SECOND_GAMUT_REMAP: if (regval == NULL || mode_select == MPCC_GAMUT_REMAP_MODE_SELECT_0) { REG_SET(MPCC_MCM_SECOND_GAMUT_REMAP_MODE[mpcc_id], 0, MPCC_MCM_SECOND_GAMUT_REMAP_MODE, mode_select); return; } gamut_regs.shifts.csc_c11 = mpc401->mpc_shift->MPCC_MCM_SECOND_GAMUT_REMAP_C11_A; gamut_regs.masks.csc_c11 = mpc401->mpc_mask->MPCC_MCM_SECOND_GAMUT_REMAP_C11_A; gamut_regs.shifts.csc_c12 = mpc401->mpc_shift->MPCC_MCM_SECOND_GAMUT_REMAP_C12_A; gamut_regs.masks.csc_c12 = mpc401->mpc_mask->MPCC_MCM_SECOND_GAMUT_REMAP_C12_A; switch (mode_select) { case MPCC_GAMUT_REMAP_MODE_SELECT_1: gamut_regs.csc_c11_c12 = REG(MPC_MCM_SECOND_GAMUT_REMAP_C11_C12_A[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_MCM_SECOND_GAMUT_REMAP_C33_C34_A[mpcc_id]); break; case MPCC_GAMUT_REMAP_MODE_SELECT_2: gamut_regs.csc_c11_c12 = REG(MPC_MCM_SECOND_GAMUT_REMAP_C11_C12_B[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_MCM_SECOND_GAMUT_REMAP_C33_C34_B[mpcc_id]); break; default: break; } cm_helper_program_color_matrices( mpc->ctx, regval, &gamut_regs); //select coefficient set to use, set A (MODE_1) or set B (MODE_2) REG_SET(MPCC_MCM_SECOND_GAMUT_REMAP_MODE[mpcc_id], 0, MPCC_MCM_SECOND_GAMUT_REMAP_MODE, mode_select); break; default: break; } } void mpc401_set_gamut_remap( struct mpc *mpc, int mpcc_id, const struct mpc_grph_gamut_adjustment *adjust) { struct dcn401_mpc *mpc401 = TO_DCN401_MPC(mpc); unsigned int i = 0; uint32_t mode_select = 0; if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW) { /* Bypass / Disable if type is bypass or hw */ program_gamut_remap(mpc, mpcc_id, NULL, adjust->mpcc_gamut_remap_block_id, MPCC_GAMUT_REMAP_MODE_SELECT_0); } else { struct fixed31_32 arr_matrix[12]; uint16_t arr_reg_val[12]; for (i = 0; i < 12; i++) arr_matrix[i] = adjust->temperature_matrix[i]; convert_float_matrix(arr_reg_val, arr_matrix, 12); switch (adjust->mpcc_gamut_remap_block_id) { case MPCC_OGAM_GAMUT_REMAP: REG_GET(MPCC_GAMUT_REMAP_MODE[mpcc_id], MPCC_GAMUT_REMAP_MODE_CURRENT, &mode_select); break; case MPCC_MCM_FIRST_GAMUT_REMAP: REG_GET(MPCC_MCM_FIRST_GAMUT_REMAP_MODE[mpcc_id], MPCC_MCM_FIRST_GAMUT_REMAP_MODE_CURRENT, &mode_select); break; case MPCC_MCM_SECOND_GAMUT_REMAP: REG_GET(MPCC_MCM_SECOND_GAMUT_REMAP_MODE[mpcc_id], MPCC_MCM_SECOND_GAMUT_REMAP_MODE_CURRENT, &mode_select); break; default: break; } //If current set in use not set A (MODE_1), then use set A, otherwise use set B if (mode_select != MPCC_GAMUT_REMAP_MODE_SELECT_1) mode_select = MPCC_GAMUT_REMAP_MODE_SELECT_1; else mode_select = MPCC_GAMUT_REMAP_MODE_SELECT_2; program_gamut_remap(mpc, mpcc_id, arr_reg_val, adjust->mpcc_gamut_remap_block_id, mode_select); } } static void read_gamut_remap(struct mpc *mpc, int mpcc_id, uint16_t *regval, enum mpcc_gamut_remap_id gamut_remap_block_id, uint32_t *mode_select) { struct color_matrices_reg gamut_regs = {0}; struct dcn401_mpc *mpc401 = TO_DCN401_MPC(mpc); switch (gamut_remap_block_id) { case MPCC_OGAM_GAMUT_REMAP: //current coefficient set in use REG_GET(MPCC_GAMUT_REMAP_MODE[mpcc_id], MPCC_GAMUT_REMAP_MODE_CURRENT, mode_select); gamut_regs.shifts.csc_c11 = mpc401->mpc_shift->MPCC_GAMUT_REMAP_C11_A; gamut_regs.masks.csc_c11 = mpc401->mpc_mask->MPCC_GAMUT_REMAP_C11_A; gamut_regs.shifts.csc_c12 = mpc401->mpc_shift->MPCC_GAMUT_REMAP_C12_A; gamut_regs.masks.csc_c12 = mpc401->mpc_mask->MPCC_GAMUT_REMAP_C12_A; switch (*mode_select) { case MPCC_GAMUT_REMAP_MODE_SELECT_1: gamut_regs.csc_c11_c12 = REG(MPC_GAMUT_REMAP_C11_C12_A[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_GAMUT_REMAP_C33_C34_A[mpcc_id]); break; case MPCC_GAMUT_REMAP_MODE_SELECT_2: gamut_regs.csc_c11_c12 = REG(MPC_GAMUT_REMAP_C11_C12_B[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_GAMUT_REMAP_C33_C34_B[mpcc_id]); break; default: break; } break; case MPCC_MCM_FIRST_GAMUT_REMAP: REG_GET(MPCC_MCM_FIRST_GAMUT_REMAP_MODE[mpcc_id], MPCC_MCM_FIRST_GAMUT_REMAP_MODE_CURRENT, mode_select); gamut_regs.shifts.csc_c11 = mpc401->mpc_shift->MPCC_MCM_FIRST_GAMUT_REMAP_C11_A; gamut_regs.masks.csc_c11 = mpc401->mpc_mask->MPCC_MCM_FIRST_GAMUT_REMAP_C11_A; gamut_regs.shifts.csc_c12 = mpc401->mpc_shift->MPCC_MCM_FIRST_GAMUT_REMAP_C12_A; gamut_regs.masks.csc_c12 = mpc401->mpc_mask->MPCC_MCM_FIRST_GAMUT_REMAP_C12_A; switch (*mode_select) { case MPCC_GAMUT_REMAP_MODE_SELECT_1: gamut_regs.csc_c11_c12 = REG(MPC_MCM_FIRST_GAMUT_REMAP_C11_C12_A[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_MCM_FIRST_GAMUT_REMAP_C33_C34_A[mpcc_id]); break; case MPCC_GAMUT_REMAP_MODE_SELECT_2: gamut_regs.csc_c11_c12 = REG(MPC_MCM_FIRST_GAMUT_REMAP_C11_C12_B[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_MCM_FIRST_GAMUT_REMAP_C33_C34_B[mpcc_id]); break; default: break; } break; case MPCC_MCM_SECOND_GAMUT_REMAP: REG_GET(MPCC_MCM_SECOND_GAMUT_REMAP_MODE[mpcc_id], MPCC_MCM_SECOND_GAMUT_REMAP_MODE_CURRENT, mode_select); gamut_regs.shifts.csc_c11 = mpc401->mpc_shift->MPCC_MCM_SECOND_GAMUT_REMAP_C11_A; gamut_regs.masks.csc_c11 = mpc401->mpc_mask->MPCC_MCM_SECOND_GAMUT_REMAP_C11_A; gamut_regs.shifts.csc_c12 = mpc401->mpc_shift->MPCC_MCM_SECOND_GAMUT_REMAP_C12_A; gamut_regs.masks.csc_c12 = mpc401->mpc_mask->MPCC_MCM_SECOND_GAMUT_REMAP_C12_A; switch (*mode_select) { case MPCC_GAMUT_REMAP_MODE_SELECT_1: gamut_regs.csc_c11_c12 = REG(MPC_MCM_SECOND_GAMUT_REMAP_C11_C12_A[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_MCM_SECOND_GAMUT_REMAP_C33_C34_A[mpcc_id]); break; case MPCC_GAMUT_REMAP_MODE_SELECT_2: gamut_regs.csc_c11_c12 = REG(MPC_MCM_SECOND_GAMUT_REMAP_C11_C12_B[mpcc_id]); gamut_regs.csc_c33_c34 = REG(MPC_MCM_SECOND_GAMUT_REMAP_C33_C34_B[mpcc_id]); break; default: break; } break; default: break; } if (*mode_select != MPCC_GAMUT_REMAP_MODE_SELECT_0) { cm_helper_read_color_matrices( mpc401->base.ctx, regval, &gamut_regs); } } void mpc401_get_gamut_remap(struct mpc *mpc, int mpcc_id, struct mpc_grph_gamut_adjustment *adjust) { uint16_t arr_reg_val[12] = {0}; uint32_t mode_select; read_gamut_remap(mpc, mpcc_id, arr_reg_val, adjust->mpcc_gamut_remap_block_id, &mode_select); if (mode_select == MPCC_GAMUT_REMAP_MODE_SELECT_0) { adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS; return; } adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW; convert_hw_matrix(adjust->temperature_matrix, arr_reg_val, ARRAY_SIZE(arr_reg_val)); } static const struct mpc_funcs dcn401_mpc_funcs = { .read_mpcc_state = mpc1_read_mpcc_state, .insert_plane = mpc1_insert_plane, .remove_mpcc = mpc1_remove_mpcc, .mpc_init = mpc32_mpc_init, .mpc_init_single_inst = mpc3_mpc_init_single_inst, .update_blending = mpc2_update_blending, .cursor_lock = mpc1_cursor_lock, .get_mpcc_for_dpp = mpc1_get_mpcc_for_dpp, .wait_for_idle = mpc2_assert_idle_mpcc, .assert_mpcc_idle_before_connect = mpc2_assert_mpcc_idle_before_connect, .init_mpcc_list_from_hw = mpc1_init_mpcc_list_from_hw, .set_denorm = mpc3_set_denorm, .set_denorm_clamp = mpc3_set_denorm_clamp, .set_output_csc = mpc3_set_output_csc, .set_ocsc_default = mpc3_set_ocsc_default, .set_output_gamma = mpc3_set_output_gamma, .insert_plane_to_secondary = NULL, .remove_mpcc_from_secondary = NULL, .set_dwb_mux = mpc3_set_dwb_mux, .disable_dwb_mux = mpc3_disable_dwb_mux, .is_dwb_idle = mpc3_is_dwb_idle, .set_gamut_remap = mpc401_set_gamut_remap, .program_shaper = mpc32_program_shaper, .program_3dlut = mpc32_program_3dlut, .program_1dlut = mpc32_program_post1dlut, .acquire_rmu = NULL, .release_rmu = NULL, .power_on_mpc_mem_pwr = mpc3_power_on_ogam_lut, .get_mpc_out_mux = mpc1_get_mpc_out_mux, .set_bg_color = mpc1_set_bg_color, .set_movable_cm_location = mpc401_set_movable_cm_location, .update_3dlut_fast_load_select = mpc401_update_3dlut_fast_load_select, .get_3dlut_fast_load_status = mpc401_get_3dlut_fast_load_status, .populate_lut = mpc401_populate_lut, .program_lut_read_write_control = mpc401_program_lut_read_write_control, .program_lut_mode = mpc401_program_lut_mode, .program_3dlut_size = mpc401_program_3dlut_size, }; void dcn401_mpc_construct(struct dcn401_mpc *mpc401, struct dc_context *ctx, const struct dcn401_mpc_registers *mpc_regs, const struct dcn401_mpc_shift *mpc_shift, const struct dcn401_mpc_mask *mpc_mask, int num_mpcc, int num_rmu) { int i; mpc401->base.ctx = ctx; mpc401->base.funcs = &dcn401_mpc_funcs; mpc401->mpc_regs = mpc_regs; mpc401->mpc_shift = mpc_shift; mpc401->mpc_mask = mpc_mask; mpc401->mpcc_in_use_mask = 0; mpc401->num_mpcc = num_mpcc; mpc401->num_rmu = num_rmu; for (i = 0; i < MAX_MPCC; i++) mpc3_init_mpcc(&mpc401->base.mpcc_array[i], i); }