// SPDX-License-Identifier: GPL-2.0-only /* * STM32 DMA3 controller driver * * Copyright (C) STMicroelectronics 2024 * Author(s): Amelie Delaunay */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../virt-dma.h" #define STM32_DMA3_SECCFGR 0x00 #define STM32_DMA3_PRIVCFGR 0x04 #define STM32_DMA3_RCFGLOCKR 0x08 #define STM32_DMA3_MISR 0x0c #define STM32_DMA3_SMISR 0x10 #define STM32_DMA3_CLBAR(x) (0x50 + 0x80 * (x)) #define STM32_DMA3_CCIDCFGR(x) (0x54 + 0x80 * (x)) #define STM32_DMA3_CSEMCR(x) (0x58 + 0x80 * (x)) #define STM32_DMA3_CFCR(x) (0x5c + 0x80 * (x)) #define STM32_DMA3_CSR(x) (0x60 + 0x80 * (x)) #define STM32_DMA3_CCR(x) (0x64 + 0x80 * (x)) #define STM32_DMA3_CTR1(x) (0x90 + 0x80 * (x)) #define STM32_DMA3_CTR2(x) (0x94 + 0x80 * (x)) #define STM32_DMA3_CBR1(x) (0x98 + 0x80 * (x)) #define STM32_DMA3_CSAR(x) (0x9c + 0x80 * (x)) #define STM32_DMA3_CDAR(x) (0xa0 + 0x80 * (x)) #define STM32_DMA3_CLLR(x) (0xcc + 0x80 * (x)) #define STM32_DMA3_HWCFGR13 0xfc0 /* G_PER_CTRL(X) x=8..15 */ #define STM32_DMA3_HWCFGR12 0xfc4 /* G_PER_CTRL(X) x=0..7 */ #define STM32_DMA3_HWCFGR4 0xfe4 /* G_FIFO_SIZE(X) x=8..15 */ #define STM32_DMA3_HWCFGR3 0xfe8 /* G_FIFO_SIZE(X) x=0..7 */ #define STM32_DMA3_HWCFGR2 0xfec /* G_MAX_REQ_ID */ #define STM32_DMA3_HWCFGR1 0xff0 /* G_MASTER_PORTS, G_NUM_CHANNELS, G_Mx_DATA_WIDTH */ #define STM32_DMA3_VERR 0xff4 /* SECCFGR DMA secure configuration register */ #define SECCFGR_SEC(x) BIT(x) /* MISR DMA non-secure/secure masked interrupt status register */ #define MISR_MIS(x) BIT(x) /* CxLBAR DMA channel x linked_list base address register */ #define CLBAR_LBA GENMASK(31, 16) /* CxCIDCFGR DMA channel x CID register */ #define CCIDCFGR_CFEN BIT(0) #define CCIDCFGR_SEM_EN BIT(1) #define CCIDCFGR_SCID GENMASK(5, 4) #define CCIDCFGR_SEM_WLIST_CID0 BIT(16) #define CCIDCFGR_SEM_WLIST_CID1 BIT(17) #define CCIDCFGR_SEM_WLIST_CID2 BIT(18) enum ccidcfgr_cid { CCIDCFGR_CID0, CCIDCFGR_CID1, CCIDCFGR_CID2, }; /* CxSEMCR DMA channel x semaphore control register */ #define CSEMCR_SEM_MUTEX BIT(0) #define CSEMCR_SEM_CCID GENMASK(5, 4) /* CxFCR DMA channel x flag clear register */ #define CFCR_TCF BIT(8) #define CFCR_HTF BIT(9) #define CFCR_DTEF BIT(10) #define CFCR_ULEF BIT(11) #define CFCR_USEF BIT(12) #define CFCR_SUSPF BIT(13) /* CxSR DMA channel x status register */ #define CSR_IDLEF BIT(0) #define CSR_TCF BIT(8) #define CSR_HTF BIT(9) #define CSR_DTEF BIT(10) #define CSR_ULEF BIT(11) #define CSR_USEF BIT(12) #define CSR_SUSPF BIT(13) #define CSR_ALL_F GENMASK(13, 8) #define CSR_FIFOL GENMASK(24, 16) /* CxCR DMA channel x control register */ #define CCR_EN BIT(0) #define CCR_RESET BIT(1) #define CCR_SUSP BIT(2) #define CCR_TCIE BIT(8) #define CCR_HTIE BIT(9) #define CCR_DTEIE BIT(10) #define CCR_ULEIE BIT(11) #define CCR_USEIE BIT(12) #define CCR_SUSPIE BIT(13) #define CCR_ALLIE GENMASK(13, 8) #define CCR_LSM BIT(16) #define CCR_LAP BIT(17) #define CCR_PRIO GENMASK(23, 22) enum ccr_prio { CCR_PRIO_LOW, CCR_PRIO_MID, CCR_PRIO_HIGH, CCR_PRIO_VERY_HIGH, }; /* CxTR1 DMA channel x transfer register 1 */ #define CTR1_SINC BIT(3) #define CTR1_SBL_1 GENMASK(9, 4) #define CTR1_DINC BIT(19) #define CTR1_DBL_1 GENMASK(25, 20) #define CTR1_SDW_LOG2 GENMASK(1, 0) #define CTR1_PAM GENMASK(12, 11) #define CTR1_SAP BIT(14) #define CTR1_DDW_LOG2 GENMASK(17, 16) #define CTR1_DAP BIT(30) enum ctr1_dw { CTR1_DW_BYTE, CTR1_DW_HWORD, CTR1_DW_WORD, CTR1_DW_DWORD, /* Depends on HWCFGR1.G_M0_DATA_WIDTH_ENC and .G_M1_DATA_WIDTH_ENC */ }; enum ctr1_pam { CTR1_PAM_0S_LT, /* if DDW > SDW, padded with 0s else left-truncated */ CTR1_PAM_SE_RT, /* if DDW > SDW, sign extended else right-truncated */ CTR1_PAM_PACK_UNPACK, /* FIFO queued */ }; /* CxTR2 DMA channel x transfer register 2 */ #define CTR2_REQSEL GENMASK(7, 0) #define CTR2_SWREQ BIT(9) #define CTR2_DREQ BIT(10) #define CTR2_BREQ BIT(11) #define CTR2_PFREQ BIT(12) #define CTR2_TCEM GENMASK(31, 30) enum ctr2_tcem { CTR2_TCEM_BLOCK, CTR2_TCEM_REPEAT_BLOCK, CTR2_TCEM_LLI, CTR2_TCEM_CHANNEL, }; /* CxBR1 DMA channel x block register 1 */ #define CBR1_BNDT GENMASK(15, 0) /* CxLLR DMA channel x linked-list address register */ #define CLLR_LA GENMASK(15, 2) #define CLLR_ULL BIT(16) #define CLLR_UDA BIT(27) #define CLLR_USA BIT(28) #define CLLR_UB1 BIT(29) #define CLLR_UT2 BIT(30) #define CLLR_UT1 BIT(31) /* HWCFGR13 DMA hardware configuration register 13 x=8..15 */ /* HWCFGR12 DMA hardware configuration register 12 x=0..7 */ #define G_PER_CTRL(x) (ULL(0x1) << (4 * (x))) /* HWCFGR4 DMA hardware configuration register 4 x=8..15 */ /* HWCFGR3 DMA hardware configuration register 3 x=0..7 */ #define G_FIFO_SIZE(x) (ULL(0x7) << (4 * (x))) #define get_chan_hwcfg(x, mask, reg) (((reg) & (mask)) >> (4 * (x))) /* HWCFGR2 DMA hardware configuration register 2 */ #define G_MAX_REQ_ID GENMASK(7, 0) /* HWCFGR1 DMA hardware configuration register 1 */ #define G_MASTER_PORTS GENMASK(2, 0) #define G_NUM_CHANNELS GENMASK(12, 8) #define G_M0_DATA_WIDTH_ENC GENMASK(25, 24) #define G_M1_DATA_WIDTH_ENC GENMASK(29, 28) enum stm32_dma3_master_ports { AXI64, /* 1x AXI: 64-bit port 0 */ AHB32, /* 1x AHB: 32-bit port 0 */ AHB32_AHB32, /* 2x AHB: 32-bit port 0 and 32-bit port 1 */ AXI64_AHB32, /* 1x AXI 64-bit port 0 and 1x AHB 32-bit port 1 */ AXI64_AXI64, /* 2x AXI: 64-bit port 0 and 64-bit port 1 */ AXI128_AHB32, /* 1x AXI 128-bit port 0 and 1x AHB 32-bit port 1 */ }; enum stm32_dma3_port_data_width { DW_32, /* 32-bit, for AHB */ DW_64, /* 64-bit, for AXI */ DW_128, /* 128-bit, for AXI */ DW_INVALID, }; /* VERR DMA version register */ #define VERR_MINREV GENMASK(3, 0) #define VERR_MAJREV GENMASK(7, 4) /* Device tree */ /* struct stm32_dma3_dt_conf */ /* .ch_conf */ #define STM32_DMA3_DT_PRIO GENMASK(1, 0) /* CCR_PRIO */ #define STM32_DMA3_DT_FIFO GENMASK(7, 4) /* .tr_conf */ #define STM32_DMA3_DT_SINC BIT(0) /* CTR1_SINC */ #define STM32_DMA3_DT_SAP BIT(1) /* CTR1_SAP */ #define STM32_DMA3_DT_DINC BIT(4) /* CTR1_DINC */ #define STM32_DMA3_DT_DAP BIT(5) /* CTR1_DAP */ #define STM32_DMA3_DT_BREQ BIT(8) /* CTR2_BREQ */ #define STM32_DMA3_DT_PFREQ BIT(9) /* CTR2_PFREQ */ #define STM32_DMA3_DT_TCEM GENMASK(13, 12) /* CTR2_TCEM */ /* struct stm32_dma3_chan .config_set bitfield */ #define STM32_DMA3_CFG_SET_DT BIT(0) #define STM32_DMA3_CFG_SET_DMA BIT(1) #define STM32_DMA3_CFG_SET_BOTH (STM32_DMA3_CFG_SET_DT | STM32_DMA3_CFG_SET_DMA) #define STM32_DMA3_MAX_BLOCK_SIZE ALIGN_DOWN(CBR1_BNDT, 64) #define port_is_ahb(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \ ((_maxdw) != DW_INVALID) && ((_maxdw) == DW_32); }) #define port_is_axi(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \ ((_maxdw) != DW_INVALID) && ((_maxdw) != DW_32); }) #define get_chan_max_dw(maxdw, maxburst)((port_is_ahb(maxdw) || \ (maxburst) < DMA_SLAVE_BUSWIDTH_8_BYTES) ? \ DMA_SLAVE_BUSWIDTH_4_BYTES : DMA_SLAVE_BUSWIDTH_8_BYTES) /* Static linked-list data structure (depends on update bits UT1/UT2/UB1/USA/UDA/ULL) */ struct stm32_dma3_hwdesc { u32 ctr1; u32 ctr2; u32 cbr1; u32 csar; u32 cdar; u32 cllr; } __packed __aligned(32); /* * CLLR_LA / sizeof(struct stm32_dma3_hwdesc) represents the number of hdwdesc that can be addressed * by the pointer to the next linked-list data structure. The __aligned forces the 32-byte * alignment. So use hardcoded 32. Multiplied by the max block size of each item, it represents * the sg size limitation. */ #define STM32_DMA3_MAX_SEG_SIZE ((CLLR_LA / 32) * STM32_DMA3_MAX_BLOCK_SIZE) /* * Linked-list items */ struct stm32_dma3_lli { struct stm32_dma3_hwdesc *hwdesc; dma_addr_t hwdesc_addr; }; struct stm32_dma3_swdesc { struct virt_dma_desc vdesc; u32 ccr; bool cyclic; u32 lli_size; struct stm32_dma3_lli lli[] __counted_by(lli_size); }; struct stm32_dma3_dt_conf { u32 ch_id; u32 req_line; u32 ch_conf; u32 tr_conf; }; struct stm32_dma3_chan { struct virt_dma_chan vchan; u32 id; int irq; u32 fifo_size; u32 max_burst; bool semaphore_mode; struct stm32_dma3_dt_conf dt_config; struct dma_slave_config dma_config; u8 config_set; struct dma_pool *lli_pool; struct stm32_dma3_swdesc *swdesc; enum ctr2_tcem tcem; u32 dma_status; }; struct stm32_dma3_ddata { struct dma_device dma_dev; void __iomem *base; struct clk *clk; struct stm32_dma3_chan *chans; u32 dma_channels; u32 dma_requests; enum stm32_dma3_port_data_width ports_max_dw[2]; }; static inline struct stm32_dma3_ddata *to_stm32_dma3_ddata(struct stm32_dma3_chan *chan) { return container_of(chan->vchan.chan.device, struct stm32_dma3_ddata, dma_dev); } static inline struct stm32_dma3_chan *to_stm32_dma3_chan(struct dma_chan *c) { return container_of(c, struct stm32_dma3_chan, vchan.chan); } static inline struct stm32_dma3_swdesc *to_stm32_dma3_swdesc(struct virt_dma_desc *vdesc) { return container_of(vdesc, struct stm32_dma3_swdesc, vdesc); } static struct device *chan2dev(struct stm32_dma3_chan *chan) { return &chan->vchan.chan.dev->device; } static void stm32_dma3_chan_dump_reg(struct stm32_dma3_chan *chan) { struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); struct device *dev = chan2dev(chan); u32 id = chan->id, offset; offset = STM32_DMA3_SECCFGR; dev_dbg(dev, "SECCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_PRIVCFGR; dev_dbg(dev, "PRIVCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_CCIDCFGR(id); dev_dbg(dev, "C%dCIDCFGR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_CSEMCR(id); dev_dbg(dev, "C%dSEMCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_CSR(id); dev_dbg(dev, "C%dSR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_CCR(id); dev_dbg(dev, "C%dCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_CTR1(id); dev_dbg(dev, "C%dTR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_CTR2(id); dev_dbg(dev, "C%dTR2(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_CBR1(id); dev_dbg(dev, "C%dBR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_CSAR(id); dev_dbg(dev, "C%dSAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_CDAR(id); dev_dbg(dev, "C%dDAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_CLLR(id); dev_dbg(dev, "C%dLLR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); offset = STM32_DMA3_CLBAR(id); dev_dbg(dev, "C%dLBAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); } static void stm32_dma3_chan_dump_hwdesc(struct stm32_dma3_chan *chan, struct stm32_dma3_swdesc *swdesc) { struct stm32_dma3_hwdesc *hwdesc; int i; for (i = 0; i < swdesc->lli_size; i++) { hwdesc = swdesc->lli[i].hwdesc; if (i) dev_dbg(chan2dev(chan), "V\n"); dev_dbg(chan2dev(chan), "[%d]@%pad\n", i, &swdesc->lli[i].hwdesc_addr); dev_dbg(chan2dev(chan), "| C%dTR1: %08x\n", chan->id, hwdesc->ctr1); dev_dbg(chan2dev(chan), "| C%dTR2: %08x\n", chan->id, hwdesc->ctr2); dev_dbg(chan2dev(chan), "| C%dBR1: %08x\n", chan->id, hwdesc->cbr1); dev_dbg(chan2dev(chan), "| C%dSAR: %08x\n", chan->id, hwdesc->csar); dev_dbg(chan2dev(chan), "| C%dDAR: %08x\n", chan->id, hwdesc->cdar); dev_dbg(chan2dev(chan), "| C%dLLR: %08x\n", chan->id, hwdesc->cllr); } if (swdesc->cyclic) { dev_dbg(chan2dev(chan), "|\n"); dev_dbg(chan2dev(chan), "-->[0]@%pad\n", &swdesc->lli[0].hwdesc_addr); } else { dev_dbg(chan2dev(chan), "X\n"); } } static struct stm32_dma3_swdesc *stm32_dma3_chan_desc_alloc(struct stm32_dma3_chan *chan, u32 count) { struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); struct stm32_dma3_swdesc *swdesc; int i; /* * If the memory to be allocated for the number of hwdesc (6 u32 members but 32-bytes * aligned) is greater than the maximum address of CLLR_LA, then the last items can't be * addressed, so abort the allocation. */ if ((count * 32) > CLLR_LA) { dev_err(chan2dev(chan), "Transfer is too big (> %luB)\n", STM32_DMA3_MAX_SEG_SIZE); return NULL; } swdesc = kzalloc(struct_size(swdesc, lli, count), GFP_NOWAIT); if (!swdesc) return NULL; swdesc->lli_size = count; for (i = 0; i < count; i++) { swdesc->lli[i].hwdesc = dma_pool_zalloc(chan->lli_pool, GFP_NOWAIT, &swdesc->lli[i].hwdesc_addr); if (!swdesc->lli[i].hwdesc) goto err_pool_free; } swdesc->ccr = 0; /* Set LL base address */ writel_relaxed(swdesc->lli[0].hwdesc_addr & CLBAR_LBA, ddata->base + STM32_DMA3_CLBAR(chan->id)); /* Set LL allocated port */ swdesc->ccr &= ~CCR_LAP; return swdesc; err_pool_free: dev_err(chan2dev(chan), "Failed to alloc descriptors\n"); while (--i >= 0) dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr); kfree(swdesc); return NULL; } static void stm32_dma3_chan_desc_free(struct stm32_dma3_chan *chan, struct stm32_dma3_swdesc *swdesc) { int i; for (i = 0; i < swdesc->lli_size; i++) dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr); kfree(swdesc); } static void stm32_dma3_chan_vdesc_free(struct virt_dma_desc *vdesc) { struct stm32_dma3_swdesc *swdesc = to_stm32_dma3_swdesc(vdesc); struct stm32_dma3_chan *chan = to_stm32_dma3_chan(vdesc->tx.chan); stm32_dma3_chan_desc_free(chan, swdesc); } static void stm32_dma3_check_user_setting(struct stm32_dma3_chan *chan) { struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); struct device *dev = chan2dev(chan); u32 ctr1 = readl_relaxed(ddata->base + STM32_DMA3_CTR1(chan->id)); u32 cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id)); u32 csar = readl_relaxed(ddata->base + STM32_DMA3_CSAR(chan->id)); u32 cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id)); u32 cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id)); u32 bndt = FIELD_GET(CBR1_BNDT, cbr1); u32 sdw = 1 << FIELD_GET(CTR1_SDW_LOG2, ctr1); u32 ddw = 1 << FIELD_GET(CTR1_DDW_LOG2, ctr1); u32 sap = FIELD_GET(CTR1_SAP, ctr1); u32 dap = FIELD_GET(CTR1_DAP, ctr1); if (!bndt && !FIELD_GET(CLLR_UB1, cllr)) dev_err(dev, "null source block size and no update of this value\n"); if (bndt % sdw) dev_err(dev, "source block size not multiple of src data width\n"); if (FIELD_GET(CTR1_PAM, ctr1) == CTR1_PAM_PACK_UNPACK && bndt % ddw) dev_err(dev, "(un)packing mode w/ src block size not multiple of dst data width\n"); if (csar % sdw) dev_err(dev, "unaligned source address not multiple of src data width\n"); if (cdar % ddw) dev_err(dev, "unaligned destination address not multiple of dst data width\n"); if (sdw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[sap])) dev_err(dev, "double-word source data width not supported on port %u\n", sap); if (ddw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[dap])) dev_err(dev, "double-word destination data width not supported on port %u\n", dap); } static void stm32_dma3_chan_prep_hwdesc(struct stm32_dma3_chan *chan, struct stm32_dma3_swdesc *swdesc, u32 curr, dma_addr_t src, dma_addr_t dst, u32 len, u32 ctr1, u32 ctr2, bool is_last, bool is_cyclic) { struct stm32_dma3_hwdesc *hwdesc; dma_addr_t next_lli; u32 next = curr + 1; hwdesc = swdesc->lli[curr].hwdesc; hwdesc->ctr1 = ctr1; hwdesc->ctr2 = ctr2; hwdesc->cbr1 = FIELD_PREP(CBR1_BNDT, len); hwdesc->csar = src; hwdesc->cdar = dst; if (is_last) { if (is_cyclic) next_lli = swdesc->lli[0].hwdesc_addr; else next_lli = 0; } else { next_lli = swdesc->lli[next].hwdesc_addr; } hwdesc->cllr = 0; if (next_lli) { hwdesc->cllr |= CLLR_UT1 | CLLR_UT2 | CLLR_UB1; hwdesc->cllr |= CLLR_USA | CLLR_UDA | CLLR_ULL; hwdesc->cllr |= (next_lli & CLLR_LA); } /* * Make sure to flush the CPU's write buffers so that the descriptors are ready to be read * by DMA3. By explicitly using a write memory barrier here, instead of doing it with writel * to enable the channel, we avoid an unnecessary barrier in the case where the descriptors * are reused (DMA_CTRL_REUSE). */ if (is_last) dma_wmb(); } static enum dma_slave_buswidth stm32_dma3_get_max_dw(u32 chan_max_burst, enum stm32_dma3_port_data_width port_max_dw, u32 len, dma_addr_t addr) { enum dma_slave_buswidth max_dw = get_chan_max_dw(port_max_dw, chan_max_burst); /* len and addr must be a multiple of dw */ return 1 << __ffs(len | addr | max_dw); } static u32 stm32_dma3_get_max_burst(u32 len, enum dma_slave_buswidth dw, u32 chan_max_burst) { u32 max_burst = chan_max_burst ? chan_max_burst / dw : 1; /* len is a multiple of dw, so if len is < chan_max_burst, shorten burst */ if (len < chan_max_burst) max_burst = len / dw; /* * HW doesn't modify the burst if burst size <= half of the fifo size. * If len is not a multiple of burst size, last burst is shortened by HW. */ return max_burst; } static int stm32_dma3_chan_prep_hw(struct stm32_dma3_chan *chan, enum dma_transfer_direction dir, u32 *ccr, u32 *ctr1, u32 *ctr2, dma_addr_t src_addr, dma_addr_t dst_addr, u32 len) { struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); struct dma_device dma_device = ddata->dma_dev; u32 sdw, ddw, sbl_max, dbl_max, tcem, init_dw, init_bl_max; u32 _ctr1 = 0, _ctr2 = 0; u32 ch_conf = chan->dt_config.ch_conf; u32 tr_conf = chan->dt_config.tr_conf; u32 sap = FIELD_GET(STM32_DMA3_DT_SAP, tr_conf), sap_max_dw; u32 dap = FIELD_GET(STM32_DMA3_DT_DAP, tr_conf), dap_max_dw; dev_dbg(chan2dev(chan), "%s from %pad to %pad\n", dmaengine_get_direction_text(dir), &src_addr, &dst_addr); sdw = chan->dma_config.src_addr_width ? : get_chan_max_dw(sap, chan->max_burst); ddw = chan->dma_config.dst_addr_width ? : get_chan_max_dw(dap, chan->max_burst); sbl_max = chan->dma_config.src_maxburst ? : 1; dbl_max = chan->dma_config.dst_maxburst ? : 1; /* Following conditions would raise User Setting Error interrupt */ if (!(dma_device.src_addr_widths & BIT(sdw)) || !(dma_device.dst_addr_widths & BIT(ddw))) { dev_err(chan2dev(chan), "Bus width (src=%u, dst=%u) not supported\n", sdw, ddw); return -EINVAL; } if (ddata->ports_max_dw[1] == DW_INVALID && (sap || dap)) { dev_err(chan2dev(chan), "Only one master port, port 1 is not supported\n"); return -EINVAL; } sap_max_dw = ddata->ports_max_dw[sap]; dap_max_dw = ddata->ports_max_dw[dap]; if ((port_is_ahb(sap_max_dw) && sdw == DMA_SLAVE_BUSWIDTH_8_BYTES) || (port_is_ahb(dap_max_dw) && ddw == DMA_SLAVE_BUSWIDTH_8_BYTES)) { dev_err(chan2dev(chan), "8 bytes buswidth (src=%u, dst=%u) not supported on port (sap=%u, dap=%u\n", sdw, ddw, sap, dap); return -EINVAL; } if (FIELD_GET(STM32_DMA3_DT_SINC, tr_conf)) _ctr1 |= CTR1_SINC; if (sap) _ctr1 |= CTR1_SAP; if (FIELD_GET(STM32_DMA3_DT_DINC, tr_conf)) _ctr1 |= CTR1_DINC; if (dap) _ctr1 |= CTR1_DAP; _ctr2 |= FIELD_PREP(CTR2_REQSEL, chan->dt_config.req_line) & ~CTR2_SWREQ; if (FIELD_GET(STM32_DMA3_DT_BREQ, tr_conf)) _ctr2 |= CTR2_BREQ; if (dir == DMA_DEV_TO_MEM && FIELD_GET(STM32_DMA3_DT_PFREQ, tr_conf)) _ctr2 |= CTR2_PFREQ; tcem = FIELD_GET(STM32_DMA3_DT_TCEM, tr_conf); _ctr2 |= FIELD_PREP(CTR2_TCEM, tcem); /* Store TCEM to know on which event TC flag occurred */ chan->tcem = tcem; /* Store direction for residue computation */ chan->dma_config.direction = dir; switch (dir) { case DMA_MEM_TO_DEV: /* Set destination (device) data width and burst */ ddw = min_t(u32, ddw, stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr)); dbl_max = min_t(u32, dbl_max, stm32_dma3_get_max_burst(len, ddw, chan->max_burst)); /* Set source (memory) data width and burst */ sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr); sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst); _ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw)); _ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1); _ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw)); _ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1); if (ddw != sdw) { _ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK); /* Should never reach this case as ddw is clamped down */ if (len & (ddw - 1)) { dev_err(chan2dev(chan), "Packing mode is enabled and len is not multiple of ddw"); return -EINVAL; } } /* dst = dev */ _ctr2 |= CTR2_DREQ; break; case DMA_DEV_TO_MEM: /* Set source (device) data width and burst */ sdw = min_t(u32, sdw, stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr)); sbl_max = min_t(u32, sbl_max, stm32_dma3_get_max_burst(len, sdw, chan->max_burst)); /* Set destination (memory) data width and burst */ ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr); dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst); _ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw)); _ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1); _ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw)); _ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1); if (ddw != sdw) { _ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK); /* Should never reach this case as ddw is clamped down */ if (len & (ddw - 1)) { dev_err(chan2dev(chan), "Packing mode is enabled and len is not multiple of ddw\n"); return -EINVAL; } } /* dst = mem */ _ctr2 &= ~CTR2_DREQ; break; case DMA_MEM_TO_MEM: /* Set source (memory) data width and burst */ init_dw = sdw; init_bl_max = sbl_max; sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr); sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst); if (chan->config_set & STM32_DMA3_CFG_SET_DMA) { sdw = min_t(u32, init_dw, sdw); sbl_max = min_t(u32, init_bl_max, stm32_dma3_get_max_burst(len, sdw, chan->max_burst)); } /* Set destination (memory) data width and burst */ init_dw = ddw; init_bl_max = dbl_max; ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr); dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst); if (chan->config_set & STM32_DMA3_CFG_SET_DMA) { ddw = min_t(u32, init_dw, ddw); dbl_max = min_t(u32, init_bl_max, stm32_dma3_get_max_burst(len, ddw, chan->max_burst)); } _ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw)); _ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1); _ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw)); _ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1); if (ddw != sdw) { _ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK); /* Should never reach this case as ddw is clamped down */ if (len & (ddw - 1)) { dev_err(chan2dev(chan), "Packing mode is enabled and len is not multiple of ddw"); return -EINVAL; } } /* CTR2_REQSEL/DREQ/BREQ/PFREQ are ignored with CTR2_SWREQ=1 */ _ctr2 |= CTR2_SWREQ; break; default: dev_err(chan2dev(chan), "Direction %s not supported\n", dmaengine_get_direction_text(dir)); return -EINVAL; } *ccr |= FIELD_PREP(CCR_PRIO, FIELD_GET(STM32_DMA3_DT_PRIO, ch_conf)); *ctr1 = _ctr1; *ctr2 = _ctr2; dev_dbg(chan2dev(chan), "%s: sdw=%u bytes sbl=%u beats ddw=%u bytes dbl=%u beats\n", __func__, sdw, sbl_max, ddw, dbl_max); return 0; } static void stm32_dma3_chan_start(struct stm32_dma3_chan *chan) { struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); struct virt_dma_desc *vdesc; struct stm32_dma3_hwdesc *hwdesc; u32 id = chan->id; u32 csr, ccr; vdesc = vchan_next_desc(&chan->vchan); if (!vdesc) { chan->swdesc = NULL; return; } list_del(&vdesc->node); chan->swdesc = to_stm32_dma3_swdesc(vdesc); hwdesc = chan->swdesc->lli[0].hwdesc; stm32_dma3_chan_dump_hwdesc(chan, chan->swdesc); writel_relaxed(chan->swdesc->ccr, ddata->base + STM32_DMA3_CCR(id)); writel_relaxed(hwdesc->ctr1, ddata->base + STM32_DMA3_CTR1(id)); writel_relaxed(hwdesc->ctr2, ddata->base + STM32_DMA3_CTR2(id)); writel_relaxed(hwdesc->cbr1, ddata->base + STM32_DMA3_CBR1(id)); writel_relaxed(hwdesc->csar, ddata->base + STM32_DMA3_CSAR(id)); writel_relaxed(hwdesc->cdar, ddata->base + STM32_DMA3_CDAR(id)); writel_relaxed(hwdesc->cllr, ddata->base + STM32_DMA3_CLLR(id)); /* Clear any pending interrupts */ csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(id)); if (csr & CSR_ALL_F) writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(id)); stm32_dma3_chan_dump_reg(chan); ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(id)); writel_relaxed(ccr | CCR_EN, ddata->base + STM32_DMA3_CCR(id)); chan->dma_status = DMA_IN_PROGRESS; dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); } static int stm32_dma3_chan_suspend(struct stm32_dma3_chan *chan, bool susp) { struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); u32 csr, ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN; int ret = 0; if (susp) ccr |= CCR_SUSP; else ccr &= ~CCR_SUSP; writel_relaxed(ccr, ddata->base + STM32_DMA3_CCR(chan->id)); if (susp) { ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr, csr & CSR_SUSPF, 1, 10); if (!ret) writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id)); stm32_dma3_chan_dump_reg(chan); } return ret; } static void stm32_dma3_chan_reset(struct stm32_dma3_chan *chan) { struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); u32 ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN; writel_relaxed(ccr |= CCR_RESET, ddata->base + STM32_DMA3_CCR(chan->id)); } static int stm32_dma3_chan_get_curr_hwdesc(struct stm32_dma3_swdesc *swdesc, u32 cllr, u32 *residue) { u32 i, lli_offset, next_lli_offset = cllr & CLLR_LA; /* If cllr is null, it means it is either the last or single item */ if (!cllr) return swdesc->lli_size - 1; /* In cyclic mode, go fast and first check we are not on the last item */ if (swdesc->cyclic && next_lli_offset == (swdesc->lli[0].hwdesc_addr & CLLR_LA)) return swdesc->lli_size - 1; /* As transfer is in progress, look backward from the last item */ for (i = swdesc->lli_size - 1; i > 0; i--) { *residue += FIELD_GET(CBR1_BNDT, swdesc->lli[i].hwdesc->cbr1); lli_offset = swdesc->lli[i].hwdesc_addr & CLLR_LA; if (lli_offset == next_lli_offset) return i - 1; } return -EINVAL; } static void stm32_dma3_chan_set_residue(struct stm32_dma3_chan *chan, struct stm32_dma3_swdesc *swdesc, struct dma_tx_state *txstate) { struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); struct device *dev = chan2dev(chan); struct stm32_dma3_hwdesc *hwdesc; u32 residue, curr_lli, csr, cdar, cbr1, cllr, bndt, fifol; bool pack_unpack; int ret; csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id)); if (!(csr & CSR_IDLEF) && chan->dma_status != DMA_PAUSED) { /* Suspend current transfer to read registers for a snapshot */ writel_relaxed(swdesc->ccr | CCR_SUSP, ddata->base + STM32_DMA3_CCR(chan->id)); ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr, csr & (CSR_SUSPF | CSR_IDLEF), 1, 10); if (ret || ((csr & CSR_TCF) && (csr & CSR_IDLEF))) { writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id)); writel_relaxed(swdesc->ccr, ddata->base + STM32_DMA3_CCR(chan->id)); if (ret) dev_err(dev, "Channel suspension timeout, csr=%08x\n", csr); } } /* If channel is still active (CSR_IDLEF is not set), can't get a reliable residue */ if (!(csr & CSR_IDLEF)) dev_warn(dev, "Can't get residue: channel still active, csr=%08x\n", csr); /* * If channel is not suspended, but Idle and Transfer Complete are set, * linked-list is over, no residue */ if (!(csr & CSR_SUSPF) && (csr & CSR_TCF) && (csr & CSR_IDLEF)) return; /* Read registers to have a snapshot */ cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id)); cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id)); cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id)); /* Resume current transfer */ if (csr & CSR_SUSPF) { writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id)); writel_relaxed(swdesc->ccr, ddata->base + STM32_DMA3_CCR(chan->id)); } /* Add current BNDT */ bndt = FIELD_GET(CBR1_BNDT, cbr1); residue = bndt; /* Get current hwdesc and cumulate residue of pending hwdesc BNDT */ ret = stm32_dma3_chan_get_curr_hwdesc(swdesc, cllr, &residue); if (ret < 0) { dev_err(chan2dev(chan), "Can't get residue: current hwdesc not found\n"); return; } curr_lli = ret; /* Read current FIFO level - in units of programmed destination data width */ hwdesc = swdesc->lli[curr_lli].hwdesc; fifol = FIELD_GET(CSR_FIFOL, csr) * (1 << FIELD_GET(CTR1_DDW_LOG2, hwdesc->ctr1)); /* If the FIFO contains as many bytes as its size, it can't contain more */ if (fifol == (1 << (chan->fifo_size + 1))) goto skip_fifol_update; /* * In case of PACKING (Destination burst length > Source burst length) or UNPACKING * (Source burst length > Destination burst length), bytes could be pending in the FIFO * (to be packed up to Destination burst length or unpacked into Destination burst length * chunks). * BNDT is not reliable, as it reflects the number of bytes read from the source but not the * number of bytes written to the destination. * FIFOL is also not sufficient, because it reflects the number of available write beats in * units of Destination data width but not the bytes not yet packed or unpacked. * In case of Destination increment DINC, it is possible to compute the number of bytes in * the FIFO: * fifol_in_bytes = bytes_read - bytes_written. */ pack_unpack = !!(FIELD_GET(CTR1_PAM, hwdesc->ctr1) == CTR1_PAM_PACK_UNPACK); if (pack_unpack && (hwdesc->ctr1 & CTR1_DINC)) { int bytes_read = FIELD_GET(CBR1_BNDT, hwdesc->cbr1) - bndt; int bytes_written = cdar - hwdesc->cdar; if (bytes_read > 0) fifol = bytes_read - bytes_written; } skip_fifol_update: if (fifol) { dev_dbg(chan2dev(chan), "%u byte(s) in the FIFO\n", fifol); dma_set_in_flight_bytes(txstate, fifol); /* * Residue is already accurate for DMA_MEM_TO_DEV as BNDT reflects data read from * the source memory buffer, so just need to add fifol to residue in case of * DMA_DEV_TO_MEM transfer because these bytes are not yet written in destination * memory buffer. */ if (chan->dma_config.direction == DMA_DEV_TO_MEM) residue += fifol; } dma_set_residue(txstate, residue); } static int stm32_dma3_chan_stop(struct stm32_dma3_chan *chan) { struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); u32 ccr; int ret = 0; chan->dma_status = DMA_COMPLETE; /* Disable interrupts */ ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)); writel_relaxed(ccr & ~(CCR_ALLIE | CCR_EN), ddata->base + STM32_DMA3_CCR(chan->id)); if (!(ccr & CCR_SUSP) && (ccr & CCR_EN)) { /* Suspend the channel */ ret = stm32_dma3_chan_suspend(chan, true); if (ret) dev_warn(chan2dev(chan), "%s: timeout, data might be lost\n", __func__); } /* * Reset the channel: this causes the reset of the FIFO and the reset of the channel * internal state, the reset of CCR_EN and CCR_SUSP bits. */ stm32_dma3_chan_reset(chan); return ret; } static void stm32_dma3_chan_complete(struct stm32_dma3_chan *chan) { if (!chan->swdesc) return; vchan_cookie_complete(&chan->swdesc->vdesc); chan->swdesc = NULL; stm32_dma3_chan_start(chan); } static irqreturn_t stm32_dma3_chan_irq(int irq, void *devid) { struct stm32_dma3_chan *chan = devid; struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); u32 misr, csr, ccr; spin_lock(&chan->vchan.lock); misr = readl_relaxed(ddata->base + STM32_DMA3_MISR); if (!(misr & MISR_MIS(chan->id))) { spin_unlock(&chan->vchan.lock); return IRQ_NONE; } csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id)); ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & CCR_ALLIE; if (csr & CSR_TCF && ccr & CCR_TCIE) { if (chan->swdesc->cyclic) vchan_cyclic_callback(&chan->swdesc->vdesc); else stm32_dma3_chan_complete(chan); } if (csr & CSR_USEF && ccr & CCR_USEIE) { dev_err(chan2dev(chan), "User setting error\n"); chan->dma_status = DMA_ERROR; /* CCR.EN automatically cleared by HW */ stm32_dma3_check_user_setting(chan); stm32_dma3_chan_reset(chan); } if (csr & CSR_ULEF && ccr & CCR_ULEIE) { dev_err(chan2dev(chan), "Update link transfer error\n"); chan->dma_status = DMA_ERROR; /* CCR.EN automatically cleared by HW */ stm32_dma3_chan_reset(chan); } if (csr & CSR_DTEF && ccr & CCR_DTEIE) { dev_err(chan2dev(chan), "Data transfer error\n"); chan->dma_status = DMA_ERROR; /* CCR.EN automatically cleared by HW */ stm32_dma3_chan_reset(chan); } /* * Half Transfer Interrupt may be disabled but Half Transfer Flag can be set, * ensure HTF flag to be cleared, with other flags. */ csr &= (ccr | CCR_HTIE); if (csr) writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(chan->id)); spin_unlock(&chan->vchan.lock); return IRQ_HANDLED; } static int stm32_dma3_alloc_chan_resources(struct dma_chan *c) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); u32 id = chan->id, csemcr, ccid; int ret; ret = pm_runtime_resume_and_get(ddata->dma_dev.dev); if (ret < 0) return ret; /* Ensure the channel is free */ if (chan->semaphore_mode && readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id)) & CSEMCR_SEM_MUTEX) { ret = -EBUSY; goto err_put_sync; } chan->lli_pool = dmam_pool_create(dev_name(&c->dev->device), c->device->dev, sizeof(struct stm32_dma3_hwdesc), __alignof__(struct stm32_dma3_hwdesc), SZ_64K); if (!chan->lli_pool) { dev_err(chan2dev(chan), "Failed to create LLI pool\n"); ret = -ENOMEM; goto err_put_sync; } /* Take the channel semaphore */ if (chan->semaphore_mode) { writel_relaxed(CSEMCR_SEM_MUTEX, ddata->base + STM32_DMA3_CSEMCR(id)); csemcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(id)); ccid = FIELD_GET(CSEMCR_SEM_CCID, csemcr); /* Check that the channel is well taken */ if (ccid != CCIDCFGR_CID1) { dev_err(chan2dev(chan), "Not under CID1 control (in-use by CID%d)\n", ccid); ret = -EPERM; goto err_pool_destroy; } dev_dbg(chan2dev(chan), "Under CID1 control (semcr=0x%08x)\n", csemcr); } return 0; err_pool_destroy: dmam_pool_destroy(chan->lli_pool); chan->lli_pool = NULL; err_put_sync: pm_runtime_put_sync(ddata->dma_dev.dev); return ret; } static void stm32_dma3_free_chan_resources(struct dma_chan *c) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); unsigned long flags; /* Ensure channel is in idle state */ spin_lock_irqsave(&chan->vchan.lock, flags); stm32_dma3_chan_stop(chan); chan->swdesc = NULL; spin_unlock_irqrestore(&chan->vchan.lock, flags); vchan_free_chan_resources(to_virt_chan(c)); dmam_pool_destroy(chan->lli_pool); chan->lli_pool = NULL; /* Release the channel semaphore */ if (chan->semaphore_mode) writel_relaxed(0, ddata->base + STM32_DMA3_CSEMCR(chan->id)); pm_runtime_put_sync(ddata->dma_dev.dev); /* Reset configuration */ memset(&chan->dt_config, 0, sizeof(chan->dt_config)); memset(&chan->dma_config, 0, sizeof(chan->dma_config)); chan->config_set = 0; } static void stm32_dma3_init_chan_config_for_memcpy(struct stm32_dma3_chan *chan, dma_addr_t dst, dma_addr_t src) { struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); u32 dw = get_chan_max_dw(ddata->ports_max_dw[0], chan->max_burst); /* port 0 by default */ u32 burst = chan->max_burst / dw; /* Initialize dt_config if channel not pre-configured through DT */ if (!(chan->config_set & STM32_DMA3_CFG_SET_DT)) { chan->dt_config.ch_conf = FIELD_PREP(STM32_DMA3_DT_PRIO, CCR_PRIO_VERY_HIGH); chan->dt_config.ch_conf |= FIELD_PREP(STM32_DMA3_DT_FIFO, chan->fifo_size); chan->dt_config.tr_conf = STM32_DMA3_DT_SINC | STM32_DMA3_DT_DINC; chan->dt_config.tr_conf |= FIELD_PREP(STM32_DMA3_DT_TCEM, CTR2_TCEM_CHANNEL); } /* Initialize dma_config if dmaengine_slave_config() not used */ if (!(chan->config_set & STM32_DMA3_CFG_SET_DMA)) { chan->dma_config.src_addr_width = dw; chan->dma_config.dst_addr_width = dw; chan->dma_config.src_maxburst = burst; chan->dma_config.dst_maxburst = burst; chan->dma_config.src_addr = src; chan->dma_config.dst_addr = dst; } } static struct dma_async_tx_descriptor *stm32_dma3_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dst, dma_addr_t src, size_t len, unsigned long flags) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); struct stm32_dma3_swdesc *swdesc; size_t next_size, offset; u32 count, i, ctr1, ctr2; count = DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE); swdesc = stm32_dma3_chan_desc_alloc(chan, count); if (!swdesc) return NULL; if (chan->config_set != STM32_DMA3_CFG_SET_BOTH) stm32_dma3_init_chan_config_for_memcpy(chan, dst, src); for (i = 0, offset = 0; offset < len; i++, offset += next_size) { size_t remaining; int ret; remaining = len - offset; next_size = min_t(size_t, remaining, STM32_DMA3_MAX_BLOCK_SIZE); ret = stm32_dma3_chan_prep_hw(chan, DMA_MEM_TO_MEM, &swdesc->ccr, &ctr1, &ctr2, src + offset, dst + offset, next_size); if (ret) goto err_desc_free; stm32_dma3_chan_prep_hwdesc(chan, swdesc, i, src + offset, dst + offset, next_size, ctr1, ctr2, next_size == remaining, false); } /* Enable Errors interrupts */ swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE; /* Enable Transfer state interrupts */ swdesc->ccr |= CCR_TCIE; swdesc->cyclic = false; return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags); err_desc_free: stm32_dma3_chan_desc_free(chan, swdesc); return NULL; } static struct dma_async_tx_descriptor *stm32_dma3_prep_slave_sg(struct dma_chan *c, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction dir, unsigned long flags, void *context) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); struct stm32_dma3_swdesc *swdesc; struct scatterlist *sg; size_t len; dma_addr_t sg_addr, dev_addr, src, dst; u32 i, j, count, ctr1, ctr2; int ret; count = sg_len; for_each_sg(sgl, sg, sg_len, i) { len = sg_dma_len(sg); if (len > STM32_DMA3_MAX_BLOCK_SIZE) count += DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE) - 1; } swdesc = stm32_dma3_chan_desc_alloc(chan, count); if (!swdesc) return NULL; /* sg_len and i correspond to the initial sgl; count and j correspond to the hwdesc LL */ j = 0; for_each_sg(sgl, sg, sg_len, i) { sg_addr = sg_dma_address(sg); dev_addr = (dir == DMA_MEM_TO_DEV) ? chan->dma_config.dst_addr : chan->dma_config.src_addr; len = sg_dma_len(sg); do { size_t chunk = min_t(size_t, len, STM32_DMA3_MAX_BLOCK_SIZE); if (dir == DMA_MEM_TO_DEV) { src = sg_addr; dst = dev_addr; ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2, src, dst, chunk); if (FIELD_GET(CTR1_DINC, ctr1)) dev_addr += chunk; } else { /* (dir == DMA_DEV_TO_MEM || dir == DMA_MEM_TO_MEM) */ src = dev_addr; dst = sg_addr; ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2, src, dst, chunk); if (FIELD_GET(CTR1_SINC, ctr1)) dev_addr += chunk; } if (ret) goto err_desc_free; stm32_dma3_chan_prep_hwdesc(chan, swdesc, j, src, dst, chunk, ctr1, ctr2, j == (count - 1), false); sg_addr += chunk; len -= chunk; j++; } while (len); } /* Enable Error interrupts */ swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE; /* Enable Transfer state interrupts */ swdesc->ccr |= CCR_TCIE; swdesc->cyclic = false; return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags); err_desc_free: stm32_dma3_chan_desc_free(chan, swdesc); return NULL; } static struct dma_async_tx_descriptor *stm32_dma3_prep_dma_cyclic(struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); struct stm32_dma3_swdesc *swdesc; dma_addr_t src, dst; u32 count, i, ctr1, ctr2; int ret; if (!buf_len || !period_len || period_len > STM32_DMA3_MAX_BLOCK_SIZE) { dev_err(chan2dev(chan), "Invalid buffer/period length\n"); return NULL; } if (buf_len % period_len) { dev_err(chan2dev(chan), "Buffer length not multiple of period length\n"); return NULL; } count = buf_len / period_len; swdesc = stm32_dma3_chan_desc_alloc(chan, count); if (!swdesc) return NULL; if (dir == DMA_MEM_TO_DEV) { src = buf_addr; dst = chan->dma_config.dst_addr; ret = stm32_dma3_chan_prep_hw(chan, DMA_MEM_TO_DEV, &swdesc->ccr, &ctr1, &ctr2, src, dst, period_len); } else if (dir == DMA_DEV_TO_MEM) { src = chan->dma_config.src_addr; dst = buf_addr; ret = stm32_dma3_chan_prep_hw(chan, DMA_DEV_TO_MEM, &swdesc->ccr, &ctr1, &ctr2, src, dst, period_len); } else { dev_err(chan2dev(chan), "Invalid direction\n"); ret = -EINVAL; } if (ret) goto err_desc_free; for (i = 0; i < count; i++) { if (dir == DMA_MEM_TO_DEV) { src = buf_addr + i * period_len; dst = chan->dma_config.dst_addr; } else { /* (dir == DMA_DEV_TO_MEM) */ src = chan->dma_config.src_addr; dst = buf_addr + i * period_len; } stm32_dma3_chan_prep_hwdesc(chan, swdesc, i, src, dst, period_len, ctr1, ctr2, i == (count - 1), true); } /* Enable Error interrupts */ swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE; /* Enable Transfer state interrupts */ swdesc->ccr |= CCR_TCIE; swdesc->cyclic = true; return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags); err_desc_free: stm32_dma3_chan_desc_free(chan, swdesc); return NULL; } static void stm32_dma3_caps(struct dma_chan *c, struct dma_slave_caps *caps) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); if (!chan->fifo_size) { caps->max_burst = 0; caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); } else { /* Burst transfer should not exceed half of the fifo size */ caps->max_burst = chan->max_burst; if (caps->max_burst < DMA_SLAVE_BUSWIDTH_8_BYTES) { caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); } } } static int stm32_dma3_config(struct dma_chan *c, struct dma_slave_config *config) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); memcpy(&chan->dma_config, config, sizeof(*config)); chan->config_set |= STM32_DMA3_CFG_SET_DMA; return 0; } static int stm32_dma3_pause(struct dma_chan *c) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); int ret; ret = stm32_dma3_chan_suspend(chan, true); if (ret) return ret; chan->dma_status = DMA_PAUSED; dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan); return 0; } static int stm32_dma3_resume(struct dma_chan *c) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); stm32_dma3_chan_suspend(chan, false); chan->dma_status = DMA_IN_PROGRESS; dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan); return 0; } static int stm32_dma3_terminate_all(struct dma_chan *c) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&chan->vchan.lock, flags); if (chan->swdesc) { vchan_terminate_vdesc(&chan->swdesc->vdesc); chan->swdesc = NULL; } stm32_dma3_chan_stop(chan); vchan_get_all_descriptors(&chan->vchan, &head); spin_unlock_irqrestore(&chan->vchan.lock, flags); vchan_dma_desc_free_list(&chan->vchan, &head); dev_dbg(chan2dev(chan), "vchan %pK: terminated\n", &chan->vchan); return 0; } static void stm32_dma3_synchronize(struct dma_chan *c) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); vchan_synchronize(&chan->vchan); } static enum dma_status stm32_dma3_tx_status(struct dma_chan *c, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); struct stm32_dma3_swdesc *swdesc = NULL; enum dma_status status; unsigned long flags; struct virt_dma_desc *vd; status = dma_cookie_status(c, cookie, txstate); if (status == DMA_COMPLETE) return status; if (!txstate) return chan->dma_status; spin_lock_irqsave(&chan->vchan.lock, flags); vd = vchan_find_desc(&chan->vchan, cookie); if (vd) swdesc = to_stm32_dma3_swdesc(vd); else if (chan->swdesc && chan->swdesc->vdesc.tx.cookie == cookie) swdesc = chan->swdesc; /* Get residue/in_flight_bytes only if a transfer is currently running (swdesc != NULL) */ if (swdesc) stm32_dma3_chan_set_residue(chan, swdesc, txstate); spin_unlock_irqrestore(&chan->vchan.lock, flags); return chan->dma_status; } static void stm32_dma3_issue_pending(struct dma_chan *c) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); unsigned long flags; spin_lock_irqsave(&chan->vchan.lock, flags); if (vchan_issue_pending(&chan->vchan) && !chan->swdesc) { dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); stm32_dma3_chan_start(chan); } spin_unlock_irqrestore(&chan->vchan.lock, flags); } static bool stm32_dma3_filter_fn(struct dma_chan *c, void *fn_param) { struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); struct stm32_dma3_dt_conf *conf = fn_param; u32 mask, semcr; int ret; dev_dbg(c->device->dev, "%s(%s): req_line=%d ch_conf=%08x tr_conf=%08x\n", __func__, dma_chan_name(c), conf->req_line, conf->ch_conf, conf->tr_conf); if (!of_property_read_u32(c->device->dev->of_node, "dma-channel-mask", &mask)) if (!(mask & BIT(chan->id))) return false; ret = pm_runtime_resume_and_get(ddata->dma_dev.dev); if (ret < 0) return false; semcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id)); pm_runtime_put_sync(ddata->dma_dev.dev); /* Check if chan is free */ if (semcr & CSEMCR_SEM_MUTEX) return false; /* Check if chan fifo fits well */ if (FIELD_GET(STM32_DMA3_DT_FIFO, conf->ch_conf) != chan->fifo_size) return false; return true; } static struct dma_chan *stm32_dma3_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct stm32_dma3_ddata *ddata = ofdma->of_dma_data; dma_cap_mask_t mask = ddata->dma_dev.cap_mask; struct stm32_dma3_dt_conf conf; struct stm32_dma3_chan *chan; struct dma_chan *c; if (dma_spec->args_count < 3) { dev_err(ddata->dma_dev.dev, "Invalid args count\n"); return NULL; } conf.req_line = dma_spec->args[0]; conf.ch_conf = dma_spec->args[1]; conf.tr_conf = dma_spec->args[2]; if (conf.req_line >= ddata->dma_requests) { dev_err(ddata->dma_dev.dev, "Invalid request line\n"); return NULL; } /* Request dma channel among the generic dma controller list */ c = dma_request_channel(mask, stm32_dma3_filter_fn, &conf); if (!c) { dev_err(ddata->dma_dev.dev, "No suitable channel found\n"); return NULL; } chan = to_stm32_dma3_chan(c); chan->dt_config = conf; chan->config_set |= STM32_DMA3_CFG_SET_DT; return c; } static u32 stm32_dma3_check_rif(struct stm32_dma3_ddata *ddata) { u32 chan_reserved, mask = 0, i, ccidcfgr, invalid_cid = 0; /* Reserve Secure channels */ chan_reserved = readl_relaxed(ddata->base + STM32_DMA3_SECCFGR); /* * CID filtering must be configured to ensure that the DMA3 channel will inherit the CID of * the processor which is configuring and using the given channel. * In case CID filtering is not configured, dma-channel-mask property can be used to * specify available DMA channels to the kernel. */ of_property_read_u32(ddata->dma_dev.dev->of_node, "dma-channel-mask", &mask); /* Reserve !CID-filtered not in dma-channel-mask, static CID != CID1, CID1 not allowed */ for (i = 0; i < ddata->dma_channels; i++) { ccidcfgr = readl_relaxed(ddata->base + STM32_DMA3_CCIDCFGR(i)); if (!(ccidcfgr & CCIDCFGR_CFEN)) { /* !CID-filtered */ invalid_cid |= BIT(i); if (!(mask & BIT(i))) /* Not in dma-channel-mask */ chan_reserved |= BIT(i); } else { /* CID-filtered */ if (!(ccidcfgr & CCIDCFGR_SEM_EN)) { /* Static CID mode */ if (FIELD_GET(CCIDCFGR_SCID, ccidcfgr) != CCIDCFGR_CID1) chan_reserved |= BIT(i); } else { /* Semaphore mode */ if (!FIELD_GET(CCIDCFGR_SEM_WLIST_CID1, ccidcfgr)) chan_reserved |= BIT(i); ddata->chans[i].semaphore_mode = true; } } dev_dbg(ddata->dma_dev.dev, "chan%d: %s mode, %s\n", i, !(ccidcfgr & CCIDCFGR_CFEN) ? "!CID-filtered" : ddata->chans[i].semaphore_mode ? "Semaphore" : "Static CID", (chan_reserved & BIT(i)) ? "denied" : mask & BIT(i) ? "force allowed" : "allowed"); } if (invalid_cid) dev_warn(ddata->dma_dev.dev, "chan%*pbl have invalid CID configuration\n", ddata->dma_channels, &invalid_cid); return chan_reserved; } static const struct of_device_id stm32_dma3_of_match[] = { { .compatible = "st,stm32mp25-dma3", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, stm32_dma3_of_match); static int stm32_dma3_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct stm32_dma3_ddata *ddata; struct reset_control *reset; struct stm32_dma3_chan *chan; struct dma_device *dma_dev; u32 master_ports, chan_reserved, i, verr; u64 hwcfgr; int ret; ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL); if (!ddata) return -ENOMEM; platform_set_drvdata(pdev, ddata); dma_dev = &ddata->dma_dev; ddata->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ddata->base)) return PTR_ERR(ddata->base); ddata->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(ddata->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(ddata->clk), "Failed to get clk\n"); reset = devm_reset_control_get_optional(&pdev->dev, NULL); if (IS_ERR(reset)) return dev_err_probe(&pdev->dev, PTR_ERR(reset), "Failed to get reset\n"); ret = clk_prepare_enable(ddata->clk); if (ret) return dev_err_probe(&pdev->dev, ret, "Failed to enable clk\n"); reset_control_reset(reset); INIT_LIST_HEAD(&dma_dev->channels); dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask); dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask); dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); dma_dev->dev = &pdev->dev; /* * This controller supports up to 8-byte buswidth depending on the port used and the * channel, and can only access address at even boundaries, multiple of the buswidth. */ dma_dev->copy_align = DMAENGINE_ALIGN_8_BYTES; dma_dev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); dma_dev->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) | BIT(DMA_MEM_TO_MEM); dma_dev->descriptor_reuse = true; dma_dev->max_sg_burst = STM32_DMA3_MAX_SEG_SIZE; dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; dma_dev->device_alloc_chan_resources = stm32_dma3_alloc_chan_resources; dma_dev->device_free_chan_resources = stm32_dma3_free_chan_resources; dma_dev->device_prep_dma_memcpy = stm32_dma3_prep_dma_memcpy; dma_dev->device_prep_slave_sg = stm32_dma3_prep_slave_sg; dma_dev->device_prep_dma_cyclic = stm32_dma3_prep_dma_cyclic; dma_dev->device_caps = stm32_dma3_caps; dma_dev->device_config = stm32_dma3_config; dma_dev->device_pause = stm32_dma3_pause; dma_dev->device_resume = stm32_dma3_resume; dma_dev->device_terminate_all = stm32_dma3_terminate_all; dma_dev->device_synchronize = stm32_dma3_synchronize; dma_dev->device_tx_status = stm32_dma3_tx_status; dma_dev->device_issue_pending = stm32_dma3_issue_pending; /* if dma_channels is not modified, get it from hwcfgr1 */ if (of_property_read_u32(np, "dma-channels", &ddata->dma_channels)) { hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1); ddata->dma_channels = FIELD_GET(G_NUM_CHANNELS, hwcfgr); } /* if dma_requests is not modified, get it from hwcfgr2 */ if (of_property_read_u32(np, "dma-requests", &ddata->dma_requests)) { hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR2); ddata->dma_requests = FIELD_GET(G_MAX_REQ_ID, hwcfgr) + 1; } /* G_MASTER_PORTS, G_M0_DATA_WIDTH_ENC, G_M1_DATA_WIDTH_ENC in HWCFGR1 */ hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1); master_ports = FIELD_GET(G_MASTER_PORTS, hwcfgr); ddata->ports_max_dw[0] = FIELD_GET(G_M0_DATA_WIDTH_ENC, hwcfgr); if (master_ports == AXI64 || master_ports == AHB32) /* Single master port */ ddata->ports_max_dw[1] = DW_INVALID; else /* Dual master ports */ ddata->ports_max_dw[1] = FIELD_GET(G_M1_DATA_WIDTH_ENC, hwcfgr); ddata->chans = devm_kcalloc(&pdev->dev, ddata->dma_channels, sizeof(*ddata->chans), GFP_KERNEL); if (!ddata->chans) { ret = -ENOMEM; goto err_clk_disable; } chan_reserved = stm32_dma3_check_rif(ddata); if (chan_reserved == GENMASK(ddata->dma_channels - 1, 0)) { ret = -ENODEV; dev_err_probe(&pdev->dev, ret, "No channel available, abort registration\n"); goto err_clk_disable; } /* G_FIFO_SIZE x=0..7 in HWCFGR3 and G_FIFO_SIZE x=8..15 in HWCFGR4 */ hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR3); hwcfgr |= ((u64)readl_relaxed(ddata->base + STM32_DMA3_HWCFGR4)) << 32; for (i = 0; i < ddata->dma_channels; i++) { if (chan_reserved & BIT(i)) continue; chan = &ddata->chans[i]; chan->id = i; chan->fifo_size = get_chan_hwcfg(i, G_FIFO_SIZE(i), hwcfgr); /* If chan->fifo_size > 0 then half of the fifo size, else no burst when no FIFO */ chan->max_burst = (chan->fifo_size) ? (1 << (chan->fifo_size + 1)) / 2 : 0; } ret = dmaenginem_async_device_register(dma_dev); if (ret) goto err_clk_disable; for (i = 0; i < ddata->dma_channels; i++) { char name[12]; if (chan_reserved & BIT(i)) continue; chan = &ddata->chans[i]; snprintf(name, sizeof(name), "dma%dchan%d", ddata->dma_dev.dev_id, chan->id); chan->vchan.desc_free = stm32_dma3_chan_vdesc_free; vchan_init(&chan->vchan, dma_dev); ret = dma_async_device_channel_register(&ddata->dma_dev, &chan->vchan.chan, name); if (ret) { dev_err_probe(&pdev->dev, ret, "Failed to register channel %s\n", name); goto err_clk_disable; } ret = platform_get_irq(pdev, i); if (ret < 0) goto err_clk_disable; chan->irq = ret; ret = devm_request_irq(&pdev->dev, chan->irq, stm32_dma3_chan_irq, 0, dev_name(chan2dev(chan)), chan); if (ret) { dev_err_probe(&pdev->dev, ret, "Failed to request channel %s IRQ\n", dev_name(chan2dev(chan))); goto err_clk_disable; } } ret = of_dma_controller_register(np, stm32_dma3_of_xlate, ddata); if (ret) { dev_err_probe(&pdev->dev, ret, "Failed to register controller\n"); goto err_clk_disable; } verr = readl_relaxed(ddata->base + STM32_DMA3_VERR); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_get_noresume(&pdev->dev); pm_runtime_put(&pdev->dev); dev_info(&pdev->dev, "STM32 DMA3 registered rev:%lu.%lu\n", FIELD_GET(VERR_MAJREV, verr), FIELD_GET(VERR_MINREV, verr)); return 0; err_clk_disable: clk_disable_unprepare(ddata->clk); return ret; } static void stm32_dma3_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); } static int stm32_dma3_runtime_suspend(struct device *dev) { struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev); clk_disable_unprepare(ddata->clk); return 0; } static int stm32_dma3_runtime_resume(struct device *dev) { struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(ddata->clk); if (ret) dev_err(dev, "Failed to enable clk: %d\n", ret); return ret; } static const struct dev_pm_ops stm32_dma3_pm_ops = { SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) RUNTIME_PM_OPS(stm32_dma3_runtime_suspend, stm32_dma3_runtime_resume, NULL) }; static struct platform_driver stm32_dma3_driver = { .probe = stm32_dma3_probe, .remove_new = stm32_dma3_remove, .driver = { .name = "stm32-dma3", .of_match_table = stm32_dma3_of_match, .pm = pm_ptr(&stm32_dma3_pm_ops), }, }; static int __init stm32_dma3_init(void) { return platform_driver_register(&stm32_dma3_driver); } subsys_initcall(stm32_dma3_init); MODULE_DESCRIPTION("STM32 DMA3 controller driver"); MODULE_AUTHOR("Amelie Delaunay "); MODULE_LICENSE("GPL");