// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020-2024 Intel Corporation */ #include "ivpu_drv.h" #include "ivpu_hw.h" #include "ivpu_hw_btrs.h" #include "ivpu_hw_btrs_lnl_reg.h" #include "ivpu_hw_btrs_mtl_reg.h" #include "ivpu_hw_reg_io.h" #include "ivpu_pm.h" #define BTRS_MTL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR)) | \ (REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR))) #define BTRS_LNL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR)) | \ (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR)) | \ (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR)) | \ (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR)) | \ (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR)) | \ (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR))) #define BTRS_MTL_ALL_IRQ_MASK (BTRS_MTL_IRQ_MASK | (REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, \ FREQ_CHANGE))) #define BTRS_IRQ_DISABLE_MASK ((u32)-1) #define BTRS_LNL_ALL_IRQ_MASK ((u32)-1) #define BTRS_MTL_WP_CONFIG_1_TILE_5_3_RATIO WP_CONFIG(MTL_CONFIG_1_TILE, MTL_PLL_RATIO_5_3) #define BTRS_MTL_WP_CONFIG_1_TILE_4_3_RATIO WP_CONFIG(MTL_CONFIG_1_TILE, MTL_PLL_RATIO_4_3) #define BTRS_MTL_WP_CONFIG_2_TILE_5_3_RATIO WP_CONFIG(MTL_CONFIG_2_TILE, MTL_PLL_RATIO_5_3) #define BTRS_MTL_WP_CONFIG_2_TILE_4_3_RATIO WP_CONFIG(MTL_CONFIG_2_TILE, MTL_PLL_RATIO_4_3) #define BTRS_MTL_WP_CONFIG_0_TILE_PLL_OFF WP_CONFIG(0, 0) #define PLL_CDYN_DEFAULT 0x80 #define PLL_EPP_DEFAULT 0x80 #define PLL_CONFIG_DEFAULT 0x0 #define PLL_SIMULATION_FREQ 10000000 #define PLL_REF_CLK_FREQ 50000000 #define PLL_TIMEOUT_US (1500 * USEC_PER_MSEC) #define IDLE_TIMEOUT_US (5 * USEC_PER_MSEC) #define TIMEOUT_US (150 * USEC_PER_MSEC) /* Work point configuration values */ #define WP_CONFIG(tile, ratio) (((tile) << 8) | (ratio)) #define MTL_CONFIG_1_TILE 0x01 #define MTL_CONFIG_2_TILE 0x02 #define MTL_PLL_RATIO_5_3 0x01 #define MTL_PLL_RATIO_4_3 0x02 #define BTRS_MTL_TILE_FUSE_ENABLE_BOTH 0x0 #define BTRS_MTL_TILE_SKU_BOTH 0x3630 #define BTRS_LNL_TILE_MAX_NUM 6 #define BTRS_LNL_TILE_MAX_MASK 0x3f #define WEIGHTS_DEFAULT 0xf711f711u #define WEIGHTS_ATS_DEFAULT 0x0000f711u #define DCT_REQ 0x2 #define DCT_ENABLE 0x1 #define DCT_DISABLE 0x0 int ivpu_hw_btrs_irqs_clear_with_0_mtl(struct ivpu_device *vdev) { REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, BTRS_MTL_ALL_IRQ_MASK); if (REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) == BTRS_MTL_ALL_IRQ_MASK) { /* Writing 1s does not clear the interrupt status register */ REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0); return true; } return false; } static void freq_ratios_init_mtl(struct ivpu_device *vdev) { struct ivpu_hw_info *hw = vdev->hw; u32 fmin_fuse, fmax_fuse; fmin_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMIN_FUSE); hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, MIN_RATIO, fmin_fuse); hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, PN_RATIO, fmin_fuse); fmax_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMAX_FUSE); hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMAX_FUSE, MAX_RATIO, fmax_fuse); } static void freq_ratios_init_lnl(struct ivpu_device *vdev) { struct ivpu_hw_info *hw = vdev->hw; u32 fmin_fuse, fmax_fuse; fmin_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMIN_FUSE); hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, MIN_RATIO, fmin_fuse); hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, PN_RATIO, fmin_fuse); fmax_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMAX_FUSE); hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMAX_FUSE, MAX_RATIO, fmax_fuse); } void ivpu_hw_btrs_freq_ratios_init(struct ivpu_device *vdev) { struct ivpu_hw_info *hw = vdev->hw; if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) freq_ratios_init_mtl(vdev); else freq_ratios_init_lnl(vdev); hw->pll.min_ratio = clamp_t(u8, ivpu_pll_min_ratio, hw->pll.min_ratio, hw->pll.max_ratio); hw->pll.max_ratio = clamp_t(u8, ivpu_pll_max_ratio, hw->pll.min_ratio, hw->pll.max_ratio); hw->pll.pn_ratio = clamp_t(u8, hw->pll.pn_ratio, hw->pll.min_ratio, hw->pll.max_ratio); } static bool tile_disable_check(u32 config) { /* Allowed values: 0 or one bit from range 0-5 (6 tiles) */ if (config == 0) return true; if (config > BIT(BTRS_LNL_TILE_MAX_NUM - 1)) return false; if ((config & (config - 1)) == 0) return true; return false; } static int read_tile_config_fuse(struct ivpu_device *vdev, u32 *tile_fuse_config) { u32 fuse; u32 config; fuse = REGB_RD32(VPU_HW_BTRS_LNL_TILE_FUSE); if (!REG_TEST_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, VALID, fuse)) { ivpu_err(vdev, "Fuse: invalid (0x%x)\n", fuse); return -EIO; } config = REG_GET_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, CONFIG, fuse); if (!tile_disable_check(config)) { ivpu_err(vdev, "Fuse: Invalid tile disable config (0x%x)\n", config); return -EIO; } if (config) ivpu_dbg(vdev, MISC, "Fuse: %d tiles enabled. Tile number %d disabled\n", BTRS_LNL_TILE_MAX_NUM - 1, ffs(config) - 1); else ivpu_dbg(vdev, MISC, "Fuse: All %d tiles enabled\n", BTRS_LNL_TILE_MAX_NUM); *tile_fuse_config = config; return 0; } static int info_init_mtl(struct ivpu_device *vdev) { struct ivpu_hw_info *hw = vdev->hw; hw->tile_fuse = BTRS_MTL_TILE_FUSE_ENABLE_BOTH; hw->sku = BTRS_MTL_TILE_SKU_BOTH; hw->config = BTRS_MTL_WP_CONFIG_2_TILE_4_3_RATIO; hw->sched_mode = ivpu_sched_mode; return 0; } static int info_init_lnl(struct ivpu_device *vdev) { struct ivpu_hw_info *hw = vdev->hw; u32 tile_fuse_config; int ret; ret = read_tile_config_fuse(vdev, &tile_fuse_config); if (ret) return ret; hw->sched_mode = ivpu_sched_mode; hw->tile_fuse = tile_fuse_config; hw->pll.profiling_freq = PLL_PROFILING_FREQ_DEFAULT; return 0; } int ivpu_hw_btrs_info_init(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return info_init_mtl(vdev); else return info_init_lnl(vdev); } static int wp_request_sync(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return REGB_POLL_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US); else return REGB_POLL_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US); } static int wait_for_status_ready(struct ivpu_device *vdev, bool enable) { u32 exp_val = enable ? 0x1 : 0x0; if (IVPU_WA(punit_disabled)) return 0; if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US); else return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US); } struct wp_request { u16 min; u16 max; u16 target; u16 cfg; u16 epp; u16 cdyn; }; static void wp_request_mtl(struct ivpu_device *vdev, struct wp_request *wp) { u32 val; val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0); val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val); val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val); REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, val); val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1); val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val); val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, EPP, PLL_EPP_DEFAULT, val); REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, val); val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2); val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val); REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, val); val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_CMD); val = REG_SET_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, val); REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_CMD, val); } static void wp_request_lnl(struct ivpu_device *vdev, struct wp_request *wp) { u32 val; val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0); val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val); val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val); REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, val); val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1); val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val); val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, EPP, wp->epp, val); REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, val); val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2); val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val); val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CDYN, wp->cdyn, val); REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, val); val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_CMD); val = REG_SET_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, val); REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_CMD, val); } static void wp_request(struct ivpu_device *vdev, struct wp_request *wp) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) wp_request_mtl(vdev, wp); else wp_request_lnl(vdev, wp); } static int wp_request_send(struct ivpu_device *vdev, struct wp_request *wp) { int ret; ret = wp_request_sync(vdev); if (ret) { ivpu_err(vdev, "Failed to sync before workpoint request: %d\n", ret); return ret; } wp_request(vdev, wp); ret = wp_request_sync(vdev); if (ret) ivpu_err(vdev, "Failed to sync after workpoint request: %d\n", ret); return ret; } static void prepare_wp_request(struct ivpu_device *vdev, struct wp_request *wp, bool enable) { struct ivpu_hw_info *hw = vdev->hw; wp->min = hw->pll.min_ratio; wp->max = hw->pll.max_ratio; if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) { wp->target = enable ? hw->pll.pn_ratio : 0; wp->cfg = enable ? hw->config : 0; wp->cdyn = 0; wp->epp = 0; } else { wp->target = hw->pll.pn_ratio; wp->cfg = enable ? PLL_CONFIG_DEFAULT : 0; wp->cdyn = enable ? PLL_CDYN_DEFAULT : 0; wp->epp = enable ? PLL_EPP_DEFAULT : 0; } /* Simics cannot start without at least one tile */ if (enable && ivpu_is_simics(vdev)) wp->cfg = 1; } static int wait_for_pll_lock(struct ivpu_device *vdev, bool enable) { u32 exp_val = enable ? 0x1 : 0x0; if (ivpu_hw_btrs_gen(vdev) != IVPU_HW_BTRS_MTL) return 0; if (IVPU_WA(punit_disabled)) return 0; return REGB_POLL_FLD(VPU_HW_BTRS_MTL_PLL_STATUS, LOCK, exp_val, PLL_TIMEOUT_US); } int ivpu_hw_btrs_wp_drive(struct ivpu_device *vdev, bool enable) { struct wp_request wp; int ret; if (IVPU_WA(punit_disabled)) { ivpu_dbg(vdev, PM, "Skipping workpoint request\n"); return 0; } prepare_wp_request(vdev, &wp, enable); ivpu_dbg(vdev, PM, "PLL workpoint request: %u Hz, config: 0x%x, epp: 0x%x, cdyn: 0x%x\n", PLL_RATIO_TO_FREQ(wp.target), wp.cfg, wp.epp, wp.cdyn); ret = wp_request_send(vdev, &wp); if (ret) { ivpu_err(vdev, "Failed to send workpoint request: %d\n", ret); return ret; } ret = wait_for_pll_lock(vdev, enable); if (ret) { ivpu_err(vdev, "Timed out waiting for PLL lock\n"); return ret; } ret = wait_for_status_ready(vdev, enable); if (ret) { ivpu_err(vdev, "Timed out waiting for NPU ready status\n"); return ret; } return 0; } static int d0i3_drive_mtl(struct ivpu_device *vdev, bool enable) { int ret; u32 val; ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US); if (ret) { ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret); return ret; } val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL); if (enable) val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val); else val = REG_CLR_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val); REGB_WR32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, val); ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US); if (ret) ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret); return ret; } static int d0i3_drive_lnl(struct ivpu_device *vdev, bool enable) { int ret; u32 val; ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US); if (ret) { ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret); return ret; } val = REGB_RD32(VPU_HW_BTRS_LNL_D0I3_CONTROL); if (enable) val = REG_SET_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val); else val = REG_CLR_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val); REGB_WR32(VPU_HW_BTRS_LNL_D0I3_CONTROL, val); ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US); if (ret) { ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret); return ret; } return 0; } static int d0i3_drive(struct ivpu_device *vdev, bool enable) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return d0i3_drive_mtl(vdev, enable); else return d0i3_drive_lnl(vdev, enable); } int ivpu_hw_btrs_d0i3_enable(struct ivpu_device *vdev) { int ret; if (IVPU_WA(punit_disabled)) return 0; ret = d0i3_drive(vdev, true); if (ret) ivpu_err(vdev, "Failed to enable D0i3: %d\n", ret); udelay(5); /* VPU requires 5 us to complete the transition */ return ret; } int ivpu_hw_btrs_d0i3_disable(struct ivpu_device *vdev) { int ret; if (IVPU_WA(punit_disabled)) return 0; ret = d0i3_drive(vdev, false); if (ret) ivpu_err(vdev, "Failed to disable D0i3: %d\n", ret); return ret; } int ivpu_hw_btrs_wait_for_clock_res_own_ack(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return 0; if (ivpu_is_simics(vdev)) return 0; return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, CLOCK_RESOURCE_OWN_ACK, 1, TIMEOUT_US); } void ivpu_hw_btrs_set_port_arbitration_weights_lnl(struct ivpu_device *vdev) { REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS, WEIGHTS_DEFAULT); REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS_ATS, WEIGHTS_ATS_DEFAULT); } static int ip_reset_mtl(struct ivpu_device *vdev) { int ret; u32 val; ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US); if (ret) { ivpu_err(vdev, "Timed out waiting for TRIGGER bit\n"); return ret; } val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_IP_RESET); val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, val); REGB_WR32(VPU_HW_BTRS_MTL_VPU_IP_RESET, val); ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US); if (ret) ivpu_err(vdev, "Timed out waiting for RESET completion\n"); return ret; } static int ip_reset_lnl(struct ivpu_device *vdev) { int ret; u32 val; ivpu_hw_btrs_clock_relinquish_disable_lnl(vdev); ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US); if (ret) { ivpu_err(vdev, "Wait for *_TRIGGER timed out\n"); return ret; } val = REGB_RD32(VPU_HW_BTRS_LNL_IP_RESET); val = REG_SET_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, val); REGB_WR32(VPU_HW_BTRS_LNL_IP_RESET, val); ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US); if (ret) ivpu_err(vdev, "Timed out waiting for RESET completion\n"); return ret; } int ivpu_hw_btrs_ip_reset(struct ivpu_device *vdev) { if (IVPU_WA(punit_disabled)) return 0; if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return ip_reset_mtl(vdev); else return ip_reset_lnl(vdev); } void ivpu_hw_btrs_profiling_freq_reg_set_lnl(struct ivpu_device *vdev) { u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS); if (vdev->hw->pll.profiling_freq == PLL_PROFILING_FREQ_DEFAULT) val = REG_CLR_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val); else val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val); REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val); } void ivpu_hw_btrs_ats_print_lnl(struct ivpu_device *vdev) { ivpu_dbg(vdev, MISC, "Buttress ATS: %s\n", REGB_RD32(VPU_HW_BTRS_LNL_HM_ATS) ? "Enable" : "Disable"); } void ivpu_hw_btrs_clock_relinquish_disable_lnl(struct ivpu_device *vdev) { u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS); val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, DISABLE_CLK_RELINQUISH, val); REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val); } bool ivpu_hw_btrs_is_idle(struct ivpu_device *vdev) { u32 val; if (IVPU_WA(punit_disabled)) return true; if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) { val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_STATUS); return REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, val) && REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, val); } else { val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS); return REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, val) && REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, val); } } int ivpu_hw_btrs_wait_for_idle(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US); else return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US); } /* Handler for IRQs from Buttress core (irqB) */ bool ivpu_hw_btrs_irq_handler_mtl(struct ivpu_device *vdev, int irq) { u32 status = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK; bool schedule_recovery = false; if (!status) return false; if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, FREQ_CHANGE, status)) ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x", REGB_RD32(VPU_HW_BTRS_MTL_CURRENT_PLL)); if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, status)) { ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0)); REGB_WR32(VPU_HW_BTRS_MTL_ATS_ERR_CLEAR, 0x1); schedule_recovery = true; } if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, status)) { u32 ufi_log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG); ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx", ufi_log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, ufi_log), REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, ufi_log), REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, ufi_log)); REGB_WR32(VPU_HW_BTRS_MTL_UFI_ERR_CLEAR, 0x1); schedule_recovery = true; } /* This must be done after interrupts are cleared at the source. */ if (IVPU_WA(interrupt_clear_with_0)) /* * Writing 1 triggers an interrupt, so we can't perform read update write. * Clear local interrupt status by writing 0 to all bits. */ REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0); else REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, status); if (schedule_recovery) ivpu_pm_trigger_recovery(vdev, "Buttress IRQ"); return true; } /* Handler for IRQs from Buttress core (irqB) */ bool ivpu_hw_btrs_irq_handler_lnl(struct ivpu_device *vdev, int irq) { u32 status = REGB_RD32(VPU_HW_BTRS_LNL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK; bool schedule_recovery = false; if (!status) return false; if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, status)) { ivpu_dbg(vdev, IRQ, "Survivability IRQ\n"); if (!kfifo_put(&vdev->hw->irq.fifo, IVPU_HW_IRQ_SRC_DCT)) ivpu_err_ratelimited(vdev, "IRQ FIFO full\n"); } if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, FREQ_CHANGE, status)) ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x", REGB_RD32(VPU_HW_BTRS_LNL_PLL_FREQ)); if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, status)) { ivpu_err(vdev, "ATS_ERR LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1), REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2)); REGB_WR32(VPU_HW_BTRS_LNL_ATS_ERR_CLEAR, 0x1); schedule_recovery = true; } if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, status)) { ivpu_err(vdev, "CFI0_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG)); REGB_WR32(VPU_HW_BTRS_LNL_CFI0_ERR_CLEAR, 0x1); schedule_recovery = true; } if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, status)) { ivpu_err(vdev, "CFI1_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG)); REGB_WR32(VPU_HW_BTRS_LNL_CFI1_ERR_CLEAR, 0x1); schedule_recovery = true; } if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, status)) { ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW), REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH)); REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_CLEAR, 0x1); schedule_recovery = true; } if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, status)) { ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW), REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH)); REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_CLEAR, 0x1); schedule_recovery = true; } /* This must be done after interrupts are cleared at the source. */ REGB_WR32(VPU_HW_BTRS_LNL_INTERRUPT_STAT, status); if (schedule_recovery) ivpu_pm_trigger_recovery(vdev, "Buttress IRQ"); return true; } int ivpu_hw_btrs_dct_get_request(struct ivpu_device *vdev, bool *enable) { u32 val = REGB_RD32(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW); u32 cmd = REG_GET_FLD(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW, CMD, val); u32 param1 = REG_GET_FLD(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW, PARAM1, val); if (cmd != DCT_REQ) { ivpu_err_ratelimited(vdev, "Unsupported PCODE command: 0x%x\n", cmd); return -EBADR; } switch (param1) { case DCT_ENABLE: *enable = true; return 0; case DCT_DISABLE: *enable = false; return 0; default: ivpu_err_ratelimited(vdev, "Invalid PARAM1 value: %u\n", param1); return -EINVAL; } } void ivpu_hw_btrs_dct_set_status(struct ivpu_device *vdev, bool enable, u32 active_percent) { u32 val = 0; u32 cmd = enable ? DCT_ENABLE : DCT_DISABLE; val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, CMD, DCT_REQ, val); val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, PARAM1, cmd, val); val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, PARAM2, active_percent, val); REGB_WR32(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, val); } static u32 pll_ratio_to_freq_mtl(u32 ratio, u32 config) { u32 pll_clock = PLL_REF_CLK_FREQ * ratio; u32 cpu_clock; if ((config & 0xff) == MTL_PLL_RATIO_4_3) cpu_clock = pll_clock * 2 / 4; else cpu_clock = pll_clock * 2 / 5; return cpu_clock; } u32 ivpu_hw_btrs_ratio_to_freq(struct ivpu_device *vdev, u32 ratio) { struct ivpu_hw_info *hw = vdev->hw; if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return pll_ratio_to_freq_mtl(ratio, hw->config); else return PLL_RATIO_TO_FREQ(ratio); } static u32 pll_freq_get_mtl(struct ivpu_device *vdev) { u32 pll_curr_ratio; pll_curr_ratio = REGB_RD32(VPU_HW_BTRS_MTL_CURRENT_PLL); pll_curr_ratio &= VPU_HW_BTRS_MTL_CURRENT_PLL_RATIO_MASK; if (!ivpu_is_silicon(vdev)) return PLL_SIMULATION_FREQ; return pll_ratio_to_freq_mtl(pll_curr_ratio, vdev->hw->config); } static u32 pll_freq_get_lnl(struct ivpu_device *vdev) { u32 pll_curr_ratio; pll_curr_ratio = REGB_RD32(VPU_HW_BTRS_LNL_PLL_FREQ); pll_curr_ratio &= VPU_HW_BTRS_LNL_PLL_FREQ_RATIO_MASK; return PLL_RATIO_TO_FREQ(pll_curr_ratio); } u32 ivpu_hw_btrs_pll_freq_get(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return pll_freq_get_mtl(vdev); else return pll_freq_get_lnl(vdev); } u32 ivpu_hw_btrs_telemetry_offset_get(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_OFFSET); else return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_OFFSET); } u32 ivpu_hw_btrs_telemetry_size_get(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_SIZE); else return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_SIZE); } u32 ivpu_hw_btrs_telemetry_enable_get(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_ENABLE); else return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_ENABLE); } void ivpu_hw_btrs_global_int_disable(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1); else REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1); } void ivpu_hw_btrs_global_int_enable(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0); else REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0); } void ivpu_hw_btrs_irq_enable(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) { REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, (u32)(~BTRS_MTL_IRQ_MASK)); REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0); } else { REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, (u32)(~BTRS_LNL_IRQ_MASK)); REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0); } } void ivpu_hw_btrs_irq_disable(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) { REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1); REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK); } else { REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1); REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK); } } static void diagnose_failure_mtl(struct ivpu_device *vdev) { u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK; if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, reg)) ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0)); if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, reg)) { u32 log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG); ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx", log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, log), REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, log), REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, log)); } } static void diagnose_failure_lnl(struct ivpu_device *vdev) { u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK; if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, reg)) { ivpu_err(vdev, "ATS_ERR_LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1), REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2)); } if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, reg)) ivpu_err(vdev, "CFI0_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG)); if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, reg)) ivpu_err(vdev, "CFI1_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG)); if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, reg)) ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW), REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH)); if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, reg)) ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW), REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH)); if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, reg)) ivpu_err(vdev, "Survivability IRQ\n"); } void ivpu_hw_btrs_diagnose_failure(struct ivpu_device *vdev) { if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) return diagnose_failure_mtl(vdev); else return diagnose_failure_lnl(vdev); }